
March 2023

Recommended Practices
for Hosting and Managing
Open Source Projects on GitHub

Ibrahim Haddad, Ph.D.
Vice President, Strategic Programs (AI & Data)
The Linux Foundation

Foreword by Jeff McAffer
Senior Director of Product
GitHub

Recommended Practices for Hosting and Managing Open Source Projects on GitHub

Copyright © 2023 The Linux Foundation | March 2023. This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License.

English is widely spoken
and understood worldwide,
and as a result, it is
the best language
to use when writing
Github content
or communications.

Protect project code
by implementing
security features
such as two-factor
authentication, access
control, code reviews,
and scanning tools.

The core open source principles
of peer review, releasing
early and often, and
continuous testing and
integration will help
establish collaborative and
transparent projects.

Choose a type of license
that supports the level
of use, modification, and
sharing required for your
project, such as those
approved by the Open
Source Initiative.

Providing
accurate licensing
information is
crucial for open
source projects hosted
on GitHub.

Two common licensing
concepts are the Developer
Certificate of Origin (DCO) and
the Contributor License
Agreement (CLA), which
outline the terms and
rights of a contribution.

Manage user support
through communication
channels, including issue
trackers, feedback platforms,
and community forums.

DCO is a way for developers
to certify that their
contributions to the
project are their own
and that they have
the necessary rights to
submit the code.

Git, the version
control of GitHub,
allows developers
to keep track of
code changes over
time.

Documentation is an
essential component
of open source projects on
GitHub that explains the
project’s purpose, code,
usage, and contributions,
instructions, and guidelines.

GitHub is a platform that
allows developers to
collaborate and share
code, providing a wide
range of tools to support
open source development
and project management.

CLA is a legal agreement
between a developer and the
project owner or maintainer
that outlines the terms and conditions
for contributions and ensures that the
project has the necessary rights to use
and distribute the code.

Contents

Foreword..4

Abstract.. 5

Introduction...6

Documentation...8

Support channels..9

Security ... 10

Licensing ... 11

General Licensing Recommendations .. 11

DCOs and CLAs.. 12

Language ...13

Adopt core open source principles..13

Peer review.. 13

Release early and often.. 13

Continuous testing and integration.. 14

Conclusion...15

Endnotes..16

Acknowledgments..16

Linux Foundation resources ..16

Feedback..16

About the author.. 17

4 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Foreword

While open source principles are relatively straightforward, “getting it right” can be challenging. Open source sits at the
intersection of technology, community, business, and personal identity, so it stands to reason that some amount of tooling
and rigor—best practices—will help smooth the path to success.

In my time as the Director of the Microsoft Open Source Programs Office (OSPO), the company evolved from having a
few hundred developers and repos on GitHub to having tens of thousands of each. We moved from ad hoc operations to
formal but still manual processes to near-full automation of our presence on GitHub and from project communities of
dozens to thousands. We developed a ton of tools and best practices to smooth that path.

My move to work at GitHub nearly five years ago was meant to bring some of those tools and learnings to the GitHub
product and, ultimately, you, the open source developers of the world. Today, GitHub has many facilities and possibilities,
from discussions to actions / checks, packages, and releases, to security, that help you and your project. I can’t even list
them all.

Successful open source is as much about people and communities as it is about the code. With this article, Ibrahim applies
his long history in open source to create a jumping-off point for you to make the most of your open source efforts on
GitHub. Using the best practices outlined here will help you create a secure, robust, and vibrant community around your
project. GitHub supplies much of the infrastructure, and you provide the innovation and community.

See you in a repo.

Jeff McAffer
GitHub

5 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Abstract

Open source software (OSS) has transformed our world and become the backbone of our digital economy
and the foundation of our digital world. Today, OSS powers the digital economy and enables scientific and
technological breakthroughs that improve our lives. From the Internet and the mobile apps we use daily to
the operating systems and programming languages we use to build the future, OSS has played a vital role. It
is the lifeblood of the technology industry.

The use of GitHub for open source development has become increasingly popular in recent years, providing
a platform for collaboration and sharing code.

Managing an open source project on GitHub can become less challenging with proper guidelines. This paper
provides an overview of best practices for using GitHub for open source development. By following these
practices, open source developers can improve the organization, understandability, and collaboration of
their projects on GitHub, making it easier for other developers to adopt and contribute.

6 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Introduction

The availability of OSS is changing how organizations develop and
deliver products. A transparent development community and
access to public source code enable organizations to think differ-
ently about procuring, implementing, testing, deploying, and main-
taining software (FIGURE 1).

OSS has created an ecosystem with many benefits for all involved.
Organizations across industries are building and growing their

open source operations under an OSPO to help use and contribute
to open source projects more efficiently and effectively and to
benefit from its strategic impact (FIGURE 2).

OSS allows shared development and lowers research and devel-
opment costs by enabling organizations to reap the benefit
of billions of dollars of OSS, which they can harness to create
better products and services. In addition, it helps to accelerate

FIGURE 1

OPEN SOURCE IS A TECHNOLOGY MARKET ACCELERANT

upstream development upstream development

model

upstream development upstream development

model

Neutral environment
for collaboration &
cross-pollination

Innovation multiplier—
community driven

Enables better
interoperability

Qualifies reference
architectures

Lowers barriers to
enter a new domain

Enables business
opportunities

supportedby a flexible
licensing model

Leads to better
products, improved
quality and security

Minimizes fragmentation
and supports the

upstream development
model

Facilitates
standardization on
open technologies

Allows fast trailing
and shared cost
of development

7 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

product development and enables a faster time to market by
aligning business needs with upstream open source projects.
Organizations do not get involved in open source projects because
it is fun; they do it because it is a part of their business or product
strategy.

Where does most open source development happen? GitHub.
GitHub is a crucial platform for open source development. It is
a web-based hosting service that uses the Git version control
system to allow developers to collaborate and share their code.
It provides a centralized platform for open source developers to
store, manage, and track changes to their codebase and collabo-
rate on development efforts with other contributors.

One of the critical advantages of GitHub is that it allows devel-
opers to easily share their code with others, making it simple for
others to contribute, review, and merge changes. It is a powerful
tool for open source development, as it enables developers to
work together on large-scale projects, regardless of their physical

location. GitHub also provides a platform for community building
and collaboration by allowing users to create open source projects,
create and manage issues, and communicate with other devel-
opers via pull requests (PRs) and comments.

Additionally, GitHub provides a wide range of tools and features
tailored to open source developers' needs. It includes features
such as project management tools, code review function-
ality, packaging, release, deployment capabilities, and built-in
integration with other developer tools such as continuous inte-
gration services, making it an all-in-one platform for open source
development.

This paper will discuss recommended practices to help you
improve your GitHub presence to attract more users and devel-
opers to your projects.

 Accelerate the development
of open solutions

 Provide an implementation
to an open standard

 Commoditize a market

 Reduce prices of nonstrategic
software assets

 Share development costs

 Drive demand by building
an ecosystem for
products and services

 Partner with others

 Engage customers

 Strengthen relationships
with common goals

FIGURE 2

STRATEGIC IMPACT OF OSS

8 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Documentation

Clear and detailed documentation is crucial for open source
projects hosted on GitHub. It helps to ensure that the project
is easy to understand and use for other developers, which can
increase the number of contributors and users. Good documen-
tation should include an overview of the project's purpose, usage
instructions, and any dependencies or requirements. It should
also include detailed explanations of the code, its workings, and
any known issues or limitations. Having clear documentation can
make it easier for other developers to understand the project
and make contributions. It can also make it easier to maintain the
project over time, as developers will better understand how the
code works and can confidently make changes. Additionally, good
documentation makes it easier for users to know how to use the
software and troubleshoot any issues they may encounter.

An open source project can provide different types of documen-
tation to help users and developers of its community. Historically,
documentation has been an area that requires improvements.
However, the situation is improving, with many projects having
excellent documentation covering all areas of the projects.

In the following subsections, we highlight three core areas where
documentation is essential.

1. Project	

b. Mission

c. Governance

d. Community structure

e. Release cadence

f. Road map and priorities

g. Use cases

h. FAQs

2. Documentation targeted for users

a. User guide and tutorials

b. API guide

c. Architecture overview

d. Installation guide

e. �Feature request and security vulnerability reporting
process

f. Experience sharing section

3. Documentation targeted for developers

a. �Detailed architecture and mapping to code sub-systems
ser�vices when applicable

b. Development process

c. Getting involved

d. Guidelines for participation

e. Feature request process

f. Patch submission process

g. Signed-off-by process, when applicable

h. Developer guides and tutorials

i. API guide

Recommendations:

1. Use the REPOLINTER tool, created by the TODO Group1, to
identify common issues in GitHub repos.

2. Add a README.md file welcoming new community members
to the project and explaining why the project is worthwhile
and how to begin.

https://github.com/todogroup/repolinter
https://github.com/todogroup/repolinter
https://todogroup.org/

9 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

3. Add a CONTRIBUTING.md file explaining how to contribute
to the project. The file explains the types of contributions
required and how the process works.

4. Add a CODEOWNERS file to define individuals or teams respon-
sible for code in a repository.

5. Add a CODE_OF_CONDUCT.md file that sets the ground rules
for participants’ behavior and helps facilitate a friendly,
welcoming environment. The CODE _ OF _ CONDUCT.md file
signals that this is a welcoming project to contribute to and
defines standards for engaging with the project’s community.

6. Add a SECURITY.md file that tells users how to report secu-
rity issues in the project.

7. Provide documentation on the release methodology, cadence,
criteria, etc.

8. Document your project governance, and make it available on
the project’s repo.

GitHub provides the ability, at the organization level, to automati-
cally apply such community health files to any repo created within
the org. To learn more, please visit GitHub Docs.

Support channels

Good user support is essential to maintaining an open source
project on GitHub. Below, we provide recommended practices
for open source projects to provide better support for their
community:

1. Create a SUPPORT.md file that details how people can get help
with your project(s).

2. Create detailed and well-organized documentation: This can
include instructions on installing and using the project, trou-
bleshooting tips, and examples of everyday use cases.

3. Use the issue tracker: This allows users to report bugs,
request features, and ask for help. Responding promptly and
providing precise and detailed responses can help to build
trust and credibility with users.

4. Be open to feedback and suggestions: Encourage users
to provide feedback, and actively seek feedback through
surveys or interviews; this can help you understand what
users want and how to improve your project.

5. Communicate actively and transparently: Using a blog, news-
letter, or social media to share progress, road maps, and

updates about your project can help users to know what's
happening and how to plan for future changes.

6. Use GitHub Discussions to support and engage with your
users and developers. Projects use GitHub Discussions. It can
help build a community around the project and provide an
easy way for users to get help and connect with other users.

7. Set up an easy-to-find and access help center: a centralized
location where users can find answers to common questions,
submit support tickets, and contact the core developers.

8. Archive inactive repos so that the users and developers know
the repos are no longer receiving support.

9. Consider adding a FUNDING.md file to let users know how
they can support your project.

By following these practices, open source projects hosted on
GitHub can provide better support, resulting in a more successful
and sustainable project.

https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-code-of-conduct-to-your-project
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/creating-a-default-community-health-file
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-support-resources-to-your-project
https://github.com/features/discussions
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/displaying-a-sponsor-button-in-your-repository

10 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Security

Implementing security measures for GitHub organizations is vital
to protect the code and data of the organization's projects. Below,
we provide a few recommendations focused on security measures
for GitHub organizations:

1. Two-factor authentication (2FA): Enabling 2FA for all organiza-
tion members helps add an extra security layer to the organi-
zation's accounts.

2. Access control: Use GitHub's built-in access control features,
such as roles and teams, to limit who has access to the orga-
nization's repositories and what actions they can perform.

3. Use GitHub Branch Protection Rules and CODEOWNERS files to
ensure that every change to your repos has been reviewed by
the right people.

4. Secure code reviews: Implement a code review process that
includes security checks, such as static code analysis, to iden-
tify and fix any potential vulnerabilities in the code.

5. Continuous integration & deployment (CI / CD): Use CI / CD
tools like GitHub Actions or CircleCI to automate the building,
testing, and deployment of code, allowing for faster identifi-
cation and fixing of security issues.

6. Use GitHub Code Scanning to find vulnerabilities in your
code.

7. Use dependency security scanning tools: Run tools like
GitHub's Dependabot, Snyk, etc. to find vulnerabilities in
packages, libraries, and other third-party code you depend
on.

8. Employee security training: Enroll in security practices
training provided by your organization.

9. �Achieve and maintain the OpenSSF Best Practices Badge
for the open source project. The OpenSSF Best Practices
Badge recognizes and encourages open source projects that
follow best security and vulnerability management practices.
Projects that earn the badge will have demonstrated that
they have a security policy, a vulnerability reporting process,
and a method for handling reported vulnerabilities. By having
the badge, projects indicate that they take security seriously
and that users and contributors can trust that the project
addresses vulnerabilities responsibly.

10. �Identify who on the project will handle security issues (could
be a team). Create a SECURITY.md file, and set up an email
account to receive security vulnerability alerts.

11. �Use GitHub Security Advisories to track, manage, and
publish responses to vulnerabilities found in your project.

12. �Use GPG to sign commits locally so you can mark them as
verified on GitHub. Other people can be confident that the
changes come from a trusted source.

13. �The OpenSSF scorecard helps maintainers improve their
security best practices, and open source consumers judge
whether the software dependencies are safe. Scorecard
assesses several heuristics associated with software security
and assigns each check a score of 0 to 10. You can use these
scores to understand specific areas to strengthen the secu-
rity posture of the project.

By implementing these practices, organizations and individuals
can help protect their code and data and keep their projects on
GitHub safe and secure. Security is an ongoing process, and there
is a need to continuously update and reinforce security measures.

https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://docs.github.com/en/code-security/security-advisories/repository-security-advisories/about-repository-security-advisories
https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification
https://securityscorecards.dev/

11 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Licensing

General licensing recommendations
The license of an open source project determines the rights to
use, copy, modify, and distribute the code. The choice of license
is essential in determining the project's openness. Open source
projects are recommended only to use licenses approved by the
Open Source Initiative and recognized as “free / libre” by the Free
Software Foundation. Such licenses allow the software to be freely
used, modified, and shared. To be approved by the Open Source
Initiative, a license must go through its license review process to
confirm that it satisfies its Open Source Definition (OSD). You may
come across many other licenses that are incompatible with the
OSD. Most of these licenses are “Source Available” licenses that
commonly include restrictions or limitations on software use and
distribution. These restrictions often render the licenses incom-
patible with the OSD.			

Below is a list of recommended practices that open source
projects can adopt to help provide accurate licensing information:

1. Include a LICENSE.md file in a conventional location (e.g., at
the root of the repository): The file should specify the terms
and conditions for using, distributing, and modifying the
software.

2. Use OSI-approved open source licenses: These licenses have
been widely reviewed and used, which makes them more
accessible for developers to understand and comply with. In
addition, GitHub has a convenient “choose a license” facility
that makes it easy to use the most common OSI-approved
licenses when creating your repos.

3. Include the license information in your REAMDE.md file:
Include a note in the REAMDE.md file that specifies the

project's license and provides a link to the LICENSE.md file.

4. Mark any third-party code: If the project contains third-party
code, clearly mark it, and include information on the license
of the third-party code.

5. Use a license badge in your README.md file: Users can quickly
see what licenses your project uses by including a license
badge in your README.md file.

6. Include a Software Package Data Exchange (SPDX) short-form
identifier in a comment at the top headers of each source
code file. SPDX is a standard format for communicating the
components, licenses, and copyrights associated with soft-
ware packages. Open source projects use SPDX to make
the license and copyright information more accessible and
machine-readable.

7. Ensure GitHub recognizes your license: Your chosen license
should appear in the GitHub UI repo summary section. If it
does not, it means GitHub could not find or understand your
license. Unfortunately, that likely means others cannot as
well.

8. Regularly review and update the licensing information to keep
it current and accurate.

9. Provide clear guidelines for contributing to the project from a
licensing perspective, especially if your project uses a DCO or
a CLA (more on that in the next section).

By following these best practices, open source projects on GitHub
can provide accurate licensing information and help developers
comply with legal requirements, making it easier for developers
to understand and use the software. These practices also help to
avoid any legal or compliance issues.

https://opensource.org/licenses/alphabetical
https://spdx.dev/

12 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

DCOs and CLAs
DCO and CLA are two concepts used in the open source devel-
opment on GitHub.

DCO stands for Developer Certificate of Origin, and it is a way for
developers to certify that their contributions to a project are their
original work or that they have the necessary rights to submit the
code. It happens by adding a "Signed-off-by" line to the end of
each commit message, which indicates that the developer agrees
to the DCO and that they are the original author of the code or
have the right to submit it. For instance, the Linux kernel develop-
ment process requires all contributors to sign off their code, which
indicates the contributor certifies the code as outlined in the DCO.
The signature communicates that the contributor has created
or received the contribution under an appropriate open source
license that allows you to incorporate it into the project’s code
base under the license indicated in the file. The DCO establishes
a chain of people responsible for the licensing and provenance of
contributions to the project.

A Contributor License Agreement (CLA) is a legal agreement
between a developer or their employer and the project owner or
maintainer. A CLA outlines the terms and conditions for contrib-
uting code to the project, such as the rights and responsibilities
of both parties. Open source projects use CLAs to protect them-
selves from legal issues that may arise from contributions made
by third parties or when a company or organization is developing
a project, and there is a solicitation of contributions from outside
contributors.

Recommendations:

1. Include a copy of or reference to the DCO in your
CONTRIBUTING.md file.

2. Set up a bot to enforce a “Signed-off-by:” tag in each commit.
For example, you can install the GitHub DCO app to manage
this aspect.

3. For projects hosted in the Linux Foundation or any umbrella
foundations, use The Linux Foundation EasyCLA tool
(https://lfcla.com/) to enforce signed CLAs before accepting
contributions.

4. For projects hosted and managed by their founders, consider
using CLA Assistant. The recommendation is that employees
consult with their corporate counsel on the most appropriate
ways to handle CLAs.

https://developercertificate.org
https://github.com/apps/dco
https://lfcla.com/
https://cla-assistant.io/

13 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Language

At the Linux Foundation, we work with open source projects from
around the globe. Some projects come to the Linux Foundation for
hosting from countries where English is not the official language.
Much of the project’s documentation on GitHub is sometimes not
provided in English. Our recommendation has always been to use

the English language for any content published on GitHub targeted
at a global audience. It is the most common language in software
development and open source communities. When a project
makes available documentation in English, it can be easily under-
stood and utilized by a much larger audience.

Adopt core open source principles

Open source development is a collaborative approach to software
development in which the source code is freely available for
anyone to use, modify, and distribute. A defining characteristic
of the development process is openness throughout the entire
life cycle, from design to release. All aspects of the development
process, including design, planning, implementation, testing, and
release, are transparent and open to contributions from the wider
community. This allows for a collaborative approach to software
development, where individuals and organizations can share
their expertise, knowledge, and resources to create high-quality
software that meets the needs of a diverse set of users.

Core concepts of open source development that enable the collab-
orative aspect at scale include peer review, release early and
release often, and continuous testing and integration.

•	 Peer review is having other developers review and critique
the code, which helps improve the quality of the software.

•	 Release early and release often is a strategy for making
software available to users as soon as possible, with frequent
updates and improvements.

•	 Continuous testing and integration is constantly testing and
integrating new code changes, which helps to identify and fix
bugs early in the development process.

These concepts work together to create a collaborative, trans-
parent, and efficient approach to software development. In the
next subsections, we will explore how GitHub supports these
core open source development concepts via various features that
enable large-scale implementation of these concepts.

Peer review
The peer review practice reduces variations in style, prompts valuable
conversations, and preserves the project’s quality standards. GitHub
manages it through the PR feature. A PR is a way for developers to
submit changes they have made to a project's code for review by
other collaborators. With the creation of a PR, other collaborators
can review the code changes, leave comments, and approve or
request changes before there is a merger of the code into the proj-
ect's main branch. To ensure peer review, it is recommended that the
owner of the GitHub org adjusts the settings and enables the branch
protection rules (either for the org or specific report) to require a PR.

Release early and often
"Release early and often" is an OSS development philosophy that
advocates for frequent and incremental releases of a project.
GitHub supports this development approach in open source
projects through branches and releases.

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.github.com/en/rest/releases?apiVersion=2022-11-28

14 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

By using a development branch for ongoing work and a separate
release branch for stable, production-ready code, developers work
on new features and bug fixes in the development branch and
periodically merge the changes into the release branch.

Another way is using feature branches, where developers create
a new branch for each feature or bug fix they are working on.
Once the work on a feature branch is complete, its merger into the
development branch and eventually into the release branch can
take place.

Additionally, GitHub has a feature called releases, which allows
packaging, tagging, and the distribution of software versions. This
feature can mark specific versions of the code as a release and
provide a way for users to download and use the release version.
Users can also view the release notes and see the changes made in
each release.

Continuous testing and integration
Continuous testing and integration in GitHub are managed
through a combination of tools, such as GitHub Actions and other
CI / CD tools.

GitHub Actions is a feature that allows developers to automate
their build and test workflow by creating custom actions triggered

by specific events, such as a push to a branch or a PR. With GitHub
Actions, developers can set up automated tests and integration
steps that run whenever specific events occur. For example, with
the creation of a PR, developers can set up GitHub Actions and
Status Checks to run a suite of tests on the code changes to ensure
that they work as expected before merging into the main branch.

Another way to manage continuous testing and integration is by
using third-party CI / CD tools such as CircleCI, TravisCI, Jenkins,
etc. These tools integrate with GitHub and allow developers to
set up a pipeline of tests and integration steps that run automat-
ically whenever there are code changes pushed to a repository.
For example, when there are code changes pushed to the develop-
ment branch, the CI / CD tool can automatically run tests, build and
deploy the code to a staging environment, and then run additional
tests to ensure that everything is working as expected before
deploying to production.

Additionally, many third-party tools offer various testing options,
such as unit testing, integration testing, and end-to-end testing,
which allows for testing different aspects of the application.

The design of both GitHub Actions and third-party CI / CD tools
makes the continuous testing and integration process as seamless
and efficient as possible.			

https://github.com/features/actions
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks
https://circleci.com/
https://www.travis-ci.com/
https://www.jenkins.io/

15 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Conclusion

GitHub plays an essential role in open source development by
providing a centralized platform for code collaboration, community
building, and project management, making it easy for developers
to collaborate on open source projects and bring them to fruition.
It is a vital tool that allows developers to share, collaborate, and
improve their contribution to the open source ecosystem.

As for getting started, there are several steps individuals can
follow to bootstrap their open source development activities on
GitHub:

1. Start by finding a project that interests you. Look for proj-
ects with a transparent development process and an
OSI-approved license.

2. Read the project's documentation and guidelines. Make sure
you understand the project's goals and its organization.

3. Create a project fork on GitHub to have a copy of the project
to which you can work and submit changes.

4. Make small changes, and submit them as PRs to the upstream
project. This process will allow the project maintainers to
review your work and provide feedback.

5. Be open to feedback and willing to make changes. Open
source development is collaborative, and good communica-
tion is critical.

6. Contribute to the project's community by answering ques-
tions, providing support, and helping new contributors.

7. Look for mentorship opportunities; if you find a maintainer
whose work you admire, reach out to them, and ask if they
would be willing to mentor you.

8. Keep your fork up to date with the main project by regularly
syncing your fork with the original repository.

We hope you find this paper helpful in providing an overview of
best practices for using GitHub for open source development. If
you’re looking to start working with open source development,
head to GitHub, set up an account, and begin!

16 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

Acknowledgments

The author would like to express his gratitude to Hilary Carter, Jason Perlow, Melissa Schmidt, and Barry Hall for their invaluable contri-
butions to the development of this paper. Special thanks to Jeff McAffer for contributing the Foreword and for his insights and detailed
feedback that has played a crucial role in improving this paper. Thank you all for your time and effort. The author also would like to
acknowledge the contributions he received via LinkedIn from Sumanta Mukhopadhyay, Phil Coval, and Andreas Fehlner.

Linux Foundation resources

•	 E-book: A Road Map to Improve the Effectiveness and Impact of Enterprise Open Source Development

•	 E-book: A Deep Dive into Open Source Program Offices: Structure, Roles, Responsibilities, and Challenges

•	 E-book: A Guide to Enterprise Open Source

•	 E-book: Open Source Audits in Merger and Acquisition Transactions

•	 Linux Foundation Enterprise Guides

•	 Linux Foundation Open Source Compliance Program

•	 TODO Group

•	 The Software Package Data Exchange®

•	 Linux Foundation Training & Certification

•	 Linux Foundation Events

Feedback

The author apologizes in advance for any spelling errors or possible errors and is grateful to receive corrections and suggestions for
improvements.

Endnotes
1 �The TODO Group is an open community of practitioners hosted at the Linux Foundation whose goal is to create and share knowledge, collaborate on practices, tools,

and other ways to run successful and effective open source initiatives and program offices.

https://www.linuxfoundation.org/research/improving-enterprise-os-dev
https://www.linuxfoundation.org/tools/a-deep-dive-into-open-source-program-offices/
https://www.linuxfoundation.org/tools/a-deep-dive-into-open-source-program-offices/
https://linuxfoundation.org/tools/guide-to-enterprise-open-source/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/
https://www.linuxfoundation.org/resources/open-source-guides/
https://www.linuxfoundation.org/resources/open-source-guides/
https://compliance.linuxfoundation.org/
http://todogroup.org/
https://spdx.dev/
https://training.linuxfoundation.org/
https://events.linuxfoundation.org/
https://www.ibrahimatlinux.com/collaboration/
http://www.ibrahimatlinux.com/contact.html

17 RECOMMENDED PRACTICES FOR HOSTING AND MANAGING OPEN SOURCE PROJECTS ON GITHUB

About the author

Dr. Ibrahim Haddad is the Executive Director of the Linux Foundation AI & Data and the PyTorch Foundation.
His primary focus is facilitating a vendor-neutral environment for advancing the open source AI platform.
Throughout his career, Haddad held technology and portfolio management roles at Ericsson Research,
the Open Source Development Labs, Motorola, Palm, Hewlett-Packard, Samsung Research, and the Linux
Foundation. Haddad graduated with honors from Concordia University (Montréal, Canada) with a Ph.D. in
computer science.

LinkedIn: @ibrahimhaddad Twitter: @IbrahimAtLinux Website: IbrahimAtLinux.com

https://www.linkedin.com/in/ibrahimhaddad/
https://twitter.com/ibrahimatlinux
about:blank
https://twitter.com/ibrahimatlinux

Copyright © 2023 The Linux Foundation

This report is licensed under the Creative Commons

Attribution-NoDerivatives 4.0 International Public License.

To reference the work, please cite as follows: Ibrahim
Haddad, Ph.D., “Recommended Practices for Hosting and
Managing Open Source Projects on GitHub,” foreword by
Jeff McAffer, The Linux Foundation, March 2023.

Founded in 2021, Linux Foundation Research explores
the growing scale of open source collaboration,
providing insight into emerging technology trends,
best practices, and the global impact of open source
projects. Through leveraging project databases and
networks, and a commitment to best practices in
quantitative and qualitative methodologies, Linux
Foundation Research is creating the go-to library for
open source insights for the benefit of organizations
the world over.

https://www.linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.linuxfoundation.org/research/
https://www.linuxfoundation.org/research/
https://twitter.com/linuxfoundation
https://www.facebook.com/TheLinuxFoundation
https://www.linkedin.com/company/the-linux-foundation/mycompany/verification/
https://www.youtube.com/user/TheLinuxFoundation
https://github.com/LF-Engineering

	Foreword
	Abstract
	Introduction
	Documentation
	Support channels
	Security
	Licensing
	General Licensing Recommendations
	DCOs and CLAs

	Language
	Adopt core open source principles
	Peer review
	Release early and often
	Continuous testing and integration

	Conclusion
	Endnotes
	Acknowledgments
	Linux Foundation resources
	Feedback
	About the author

