
A Road Map to
Improve the
Effectiveness and
Impact of Enterprise
Open Source
Development
February 2023

Ibrahim Haddad, Ph.D.
Vice President, Strategic Programs (AI & Data)

Foreword by Jessica Murillo
VP and Delivery Practice Leader, IBM

Contents

Foreword ... 3

Introduction ...5

Hire developers from the project’s community 7

Support and allocate time for upstream contributions 7

Create a mentorship program ...8

Offer training ...9

Participate in and host open source events9

Provide a flexible IT infrastructure ..9

Track developer code contributions .. 10

Identify focus areas with a broad impact 10

Foster internal collaboration ... 10

Implement inner sourcing practices ...11

Recommendations and lessons learned12

Be patient ...12

Embrace a flexible IT infrastructure ..12

Adopt proper success metrics ..12

Use a lightweight approval process ..12

Share information ...12

Make strategic contributions ...13

Partner with product teams ...13

Grow open source talent ... 14

Conclusion ... 15

Acknowledgments ...17

Feedback ...17

Linux Foundation resources ...17

About the author ... 18

Foreword

A lot has changed in the past 20 years since technology
companies, like IBM, began their open source journey. In the
first 10 years, enterprises started by contributing to open source
projects to help fill their needs; they made strategic investments
in technology, collaboration and communities and built an entirely
new ecosystem. In the next 10 years, we saw the emergence
of hyperscale cloud providers and Fortune 500 companies that
shifted from being passive consumers to proactive participants in
open source communities. This heightened collaboration spurred
even faster innovation.

We have learned that companies who only participate in open
source on an ad-hoc basis cannot achieve long-term success.
The key is for companies to take a more structured, enterprise
approach, putting open source at the core of their technology
strategy. To truly benefit from the open source community
model, each contributor is responsible for making the necessary
investments in those communities. This includes providing
open source developers from your company with the proper
tooling, training, and mentoring to become strong community
contributors and grow into leaders. It means we need to work
together to solve not only the problems that scratch our own
itch, but by broadening the scope of influence and focusing our

time and talent to improve the code base and remediate issues in
open source software if they arise. That is what it means to be a
good member of an open source community.

This document provides an overview and step by step guide for
companies to engage in open source development, no matter
where you are on your journey.

JESSICA MURILLO
VP and Delivery Practice Leader, IBM

“In real open source, you have the right to control your own destiny.”
 – LINUS TORVALDS, CREATOR OF THE LINUX KERNEL

3A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

Adopt IT infrastructure
that is flexible
and supportive
of open source
development.

Share information
across divisions
and foster internal
collaborations for
successful
implementation
of innersource
practices.

Track success
through specifically

designed metrics
for an open source

environment.

Follow a
lightweight and
tailored approach
to source code
contribution
approvals.

Allocate time for
open source
developers to meet
upstream
responsibilities,
especially if they
are maintainers.

Partner with
product teams on
upstream code
development that
helps reduce their
technical debt.

Contribute
strategically to

projects that are
commonly used

across products and
services to remain

essential, justifiable,
and fundable.

Develop open
source talent
internally, and
encourage
involvement in
open source from
developers across
the organization.

Create a mentorship
program to support
the growth of junior
developers and
increase the quality
and quantity of code
accepted in open
source projects.

Participate in and host
open source events
to build developer
networks, participate
in technical
discussions, and
increase visibility.

Practice and
encourage

an open and
collaborative

mindset when
implementing

open source
infrastructure.

Be patient and seek
out influential peers
when growing your
domain expertise,
open source
methodology, and
working practices.

Copyright © 2023 The Linux Foundation | February 2023
This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License. 4

https://creativecommons.org/licenses/by-nd/4.0/

Introduction
Corporate participation in open source has reached an all-time
high and continues to grow as organizations realize the value
of consuming and contributing to open source projects
(FIGURE 1). In addition, the nature of corporate (also called
enterprise) participation continues to evolve as organizations
increasingly discover that open sourcing proprietary technologies
can create new sources of value and more robust product
ecosystems.

Enterprise open source development has challenges, which we
discussed in detail in “A Deep Dive into Open Source Program
Offices: Structure, Roles, Responsibilities, and Challenges.”

The enterprise open source journey is challenging (FIGURE 2),
and an organization needs to address this to build its open source
leadership. If the organization has a clear plan to implement

internal practices and address those known challenges, the
journey becomes easier. For instance, the Linux Kernel is the
largest collaborative software project in the world, and getting
involved in the development process can be overwhelming.
If you are one of the organizations that rely on the Linux Kernel
for their products and services, investing time and resources
into improving your internal development abilities, contributions
process, and syncing your development with the upstream
project can pay off immensely in the long run.

Fortunately, since so many organizations and individuals have
been successful at contributing to the Linux Kernel, there is a
clear path to improve your own Linux Kernel contributions and
aim for a leadership role.

5A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

S FIGURE 1

OPEN SOURCE STRATEGIC IMPACT

Accelerates the
development of
open solutions

Provides an
implementation to
an open standard

Commoditizes a market Drives demand
by building an
ecosystem for
products and
services

Shares development costs

Reduces the process of
nonstrategic software assets

Provides an implementation to
an open standard

Partners with others

Engages customers

Strengthens relationships
with common goals

https://www.linuxfoundation.org/research/a-deep-dive-into-open-source-program-offices
https://www.linuxfoundation.org/research/a-deep-dive-into-open-source-program-offices

Several factors drive and motivate participation in
open source projects:

• Reducing the amount of work needed from product teams

• Minimizing the cost to maintain source code and internal
software branches

• Improving code quality

• Supporting faster development cycles

• Producing more stable code to serve as the base for products

• Improving the organization’s reputation in critical open
source communities

Organizations often upstream modifications to open source
projects, which is a fundamental aspect of the open source
methodology. Following this approach, enterprise developers
submit internal changes to the open source project for evaluation
for acceptance into the main development tree. This process
achieves several technical and nontechnical benefits for the
enterprise due to such contributions (see FIGURE 3).

This report covers several practices enterprises can adopt to help
grow their footprint in open source projects.

6A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 2

CHALLENGES ENTERPRISES FACE AS PART OF
INSTITUTIONALIZING OPEN SOURCE DEVELOPMENT PRACTICES

Development model
Collaboration
Transparency
Meritocracy

Team formation
Hiring practices
Success metrics

Culture

Governance
Usage

Compliance
Contribution

Approvals
Policies

Processes

Operations

IT infrastructure
Development tools

Metric tracking
Knowledge sharing

Code reuse
Software

composition analysis
tool adoption

Tools

Strategy
Projects
Priorities
Funding

Executive support

Continuity

Executive education
Knowledge transfer

Technical training
Compliance training
Mentorship programs

Education

Hire developers from the
project’s community
This critical step allows your organization to gain skills and
recognition immediately. Hiring two or three people is a great
start toward making a noticeable impact on a large project, such
as the Linux Kernel, attracting further hires and allowing enough
resources to mentor existing junior developers.

It is crucial to align corporate interests with individual interests.
It will be hard to motivate a senior open source developer to work
on a given project when their interests do not match those of their
employers. For instance, a memory management expert may
not be interested in working on file systems; therefore, finding a
match in interests is critical.

Support and allocate time
for upstream contributions
The core principle for hiring open source developers is to
support an organization’s open source strategy, development,
and upstream activities; however, in most cases, there is the
expectation that open source developers will need to be available
to support product teams due to their expertise and influence
in their respective open source projects. It is also common for
product teams to exercise their influence in an attempt to hijack
the time of the open source developers by having them work
on product development as much as possible. If this happens,
many open source developers will head to the door, seeking new
opportunities that allows them to work on their upstream project
before an organization realizes what just happened.

7A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 3

BENEFITS OF UPSTREAMING CODE

Lower maintenance efforts for internally managed code,
 i.e., minimizes technical debt.

Upstreamed code becomes visible to others and receives
peer review and feedback, leading to improvements.

Upstream contributions provide stability to the project.
They send a signal that the project is useful and important,
which helps attract new contributors.

Builds a positive relationship between the contributing
organization and the project community.

Upstreaming code is an effective way to provide
technical leadership and influence the project.

Upstreaming contributes to easier compliance and
improved security due to centralizing code in
upstream repos.

Upstream contributions are an effective means of
ensuring stability in a company’s software supply chain.

Helps organizations recruit talent from projects and
retain their own developers by engaging them with
the open source innovation engine.

Therefore, creating and maintaining a separation of upstream
work and product work is essential. In other words, a followed
practice is to provide open source developers with guaranteed
time to meet their upstream aspirations and responsibilities,
especially if they are maintainers. For junior developers, or other
internal developers using open source in product components,
such interactions with the upstream community will increase
their language, communication, and technical skills. In the
absence of such an upstream time guarantee, it is easy for
these team members to become an extension of product teams,
resulting in their upstream focus drying up in favor of product
development.

Create a mentorship program
Set up a mentorship program where senior, experienced open
source developers mentor junior, less experienced developers.
Typically, a mentorship program runs for three to six months,
during which the mentor supervises the mentee’s work,
assigns tasks, and ensures proper results. The mentor also
conducts code reviews and provides feedback on anything
the mentee produces before the mentee pushes the code to
the upstream project.

This exercise aims to increase the number of developers
contributing code to the upstream project and improve
individual effectiveness by increasing the quality of code and
the percentage of code accepted into the upstream project. In
general, four to five mentees should work with a given mentor,
and, ideally, they should work in the same area as the mentor to
make code reviews more efficient.

Formalize open source
human resources tracking
& performance metrics
Mature open source organizations almost always have an open
source developer track in their HR system. So, individuals hired as
open source developers have a good sense of how their careers
will progress within the organization. Additionally, organizations
often need to adjust their performance-based bonuses and
metrics to include goals related to open source development
work. Closed source developers’ performance metrics are often
different from those of open source developers. For example, if
an open source developer advocates for the implementation of
a given feature, successfully gathers interest, and volunteers to
write the code, how would they be rated, especially if they may
not have written a single line of code?

Finally, organizations should allow a work-from-home (WFH)
policy for open source developers regardless of the general
corporate policy. During COVID-19, we witnessed organizations
institute WFH policies to allow employees to be productive while
under quarantine. It was a fascinating experiment for WFH
policies, as organizations continued to operate, innovate, and
produce, even though most of their employees worked from
home. A WFH policy is almost mandatory in the open source
world because open source developers are located worldwide,
making hiring and retaining them easier.

8A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

Offer training
It is only possible for organizations to hire some of the senior
and most expert developers. They are always looking for
ways to increase the competence of their developers in a
given technical domain; therefore, in addition to specialized
training, organizations need to offer training on the open source
development model and the basic concepts of open source
legal compliance.

Sample training courses include:

• An open source development methodology course that
teaches staff new to open source how open source
development works and how to get best engaged with the
project community

• An open source compliance course that teaches staff
the basics of compliance principles and open source
licensing. The course often includes modules covering the
organization’s policy and process.

The Linux Foundation offers several technical training courses
specific to open source technologies and several nontechnical
courses, such as this free online open source compliance
training for developers.

Participate in and host
open source events
Mature open source organizations support and encourage
their developers to host, attend, and participate in open source
conferences and events, including local community meetups,
hackathons, and summits. Such participation helps open
source developers connect personally with their peers, build
relationships, and participate in technical discussions that
guide the direction of the respective open source projects.
As an organization that uses and adopts open source software,
it is highly recommended to facilitate for your open source
developers the process of attending and presenting at open
source events. You can also sponsor big and small events
to increase external visibility within the open source global
community or simply target events tailored for specific open
source projects. As a bonus benefit, such events are also great
venues to look for talent.

Provide a flexible IT
infrastructure
Provide a flexible IT infrastructure that allows open source
developers to communicate and work with the open source and
Linux Kernel communities without any challenges. Additionally,
set up an internal IT infrastructure that matches the tools used
externally to help bridge the gap between internal teams and the
Kernel community or any other open source project community
for that purpose.

9A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

https://training.linuxfoundation.org/full-catalog
https://training.linuxfoundation.org/full-catalog

Open source development uses three primary domains of
IT services: knowledge sharing (wikis, collaborative editing
platforms, and public websites), communication and problem
solving (mailing lists, forums, and real-time chat), and code
development and distribution (code repositories and bug
tracking). Making some or all of these tools available internally
properly supports open source development. However, this might
conflict with existing organization-wide IT policies. If so, it is vital
to resolve these conflicts and allow open source developers to
use familiar tools.

Track developer code
contributions
Create an internal system to keep track of developer contributions
and impact. Contributions can include upstream development,
supporting product teams, knowledge transfer (mentoring,
training), visibility (publications, talks), launching new open source
projects, and establishing internal collaboration projects with
other teams or groups.

With this data, you can compare contributions from various
internal development teams to identify where source code
contributions are coming from.

For instance, you can use these metrics to compare your
performance to other organizations involved in the Kernel
ecosystem. This approach helps better inform you about
the overall developer ecosystem for the project. In addition,
these metrics provide a much better idea of your strengths
and weaknesses and can help inform your overall
development strategy.

Identify focus areas
with a broad impact
Contribute to and focus on areas that benefit more than one
business unit or more than one product. This contribution
model, driven by the criticality of software components,
allows you to provide value and show return on investment
across multiple business units, increasing your chances for more
funding and support.

Foster internal collaboration
Create collaboration projects with other business units that
use the specific open source projects in their products. These
collaborations can take one or more of many forms:

• Deliver training to their developers.

• Run a workshop on a specific topic or problem.

• Develop new functionality.

• Troubleshoot and resolve issues and bugs.

• Upstream existing code for which they lack resources.

• Help get them off an old fork and onto a mainline version.

These collaborations aim to help the product teams understand
their needs and fulfill their product goals via open source
enablement.

10A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

Implement inner
sourcing practices
Inner sourcing is the application of open source methodologies
to development projects inside the organization. The goal is to
incubate the same capabilities within the enterprise as those
in the open source community and to foster new employee-to-
employee relationships that are cross-functional and touch on
multiple product domains.

Open source principles work well on large-scale projects
distributed across an enterprise. Many Fortune 500 organizations
have adopted them externally and internally for the same
reasons: faster releases, improved quality, increased innovation
and communications, information sharing, reduced costs, greater
and more effective collaboration, and increased employee morale
and retention.

Inner sourcing prepares organizations to work effectively with
external open source communities. It encourages employees to
interact with colleagues elsewhere and with external community
members without switching contexts. In addition, new employees
familiar with this development model may integrate more
quickly into established workflows. Finally, business partners are
probably already using many of these development practices, so
when an organization adopts inner sourcing practices, it is also
strengthening its integration with the commercial ecosystem.

Releases
cadency faster

Improves source
code quality

Increases
motivation

Increases internal
information sharing

Reduces costs of
development

Increases internal
collaboration

Increases morale,
retention

Increases internal
communication

11A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 4

BENEFITS OF ADOPTING INNERSOURCE PRACTICES
IN THE ENTERPRISE

Recommendations and lessons learned

Be patient
It takes considerable time to grow internal open source expertise.
The goal from an enterprise perspective is to find people with
enough peer recognition to be influential in the community. There
are typically three pillars to this: domain expertise, open source
methodology, and working practices.

Shift to a more collaborative environment
Internal organization dynamics must be favorable to open
source efforts. Implementing these practices requires a shift
from traditional software development practices to a more open
and collaborative mindset. As an open source leader inside
your organization, you will face several challenges in funding
resources, justifying ROI, getting upstream focus, etc. These
often require a major shift in mindset and a lot of education up
the command chain.

Embrace a flexible IT infrastructure
These open source practices require an IT infrastructure free
from many limiting IT policies and a computing environment that
supports open source development.

Adopt proper success metrics
Proper open source metrics drive the desired development
behavior. Unfortunately, the traditional metrics often used in
product organizations only apply in the context of open source
development. For example, we have had multiple instances of
the upstream implementation of desired functionality because
of OSG developers that lobby for support from the community.

In this case, the number of changesets or lines of code does
not matter as much, as the technical leadership team members
provide to get code upstream and reduce our downstream
maintenance efforts. The metrics we track account for things
like this.

Use a lightweight approval process
Organizations have transitioned from highly complex and
cumbersome policies to a more straightforward approach for
receiving, reviewing, and approving source code contributions.
Dedicated open source teams often receive blanket approval to
contribute to open source projects. This is not the case for other
groups, which need different approval levels depending on the
nature of the contributed code (e.g., simple bug fixes, code to
improve existing functionality, code that offers new functionality,
or starting a new project). This is a function of the balance
between all parties involved: legal, engineering, and open source.

Share information
The organization must share information and priorities across
different divisions. To illustrate this, assume you are on an
open source team and request to support the implementation
of a driver, but you cannot access the hardware manual and
instructions. This situation sounds a bit like playing darts with the
lights off; therefore, information sharing is critical to successful
internal collaborations between the open source teams and
everyone else.

12A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

Make strategic contributions
Focus your contributions on upstream projects that would
directly benefit the organization’s strategy and products. In open
source development, it is easy to get carried away by hopping
between different exciting projects. However, in an enterprise
setting where the open source group is a cost center, your driving
force should be to focus on open source projects that support
product development. Open source teams often perform a yearly
review of the product portfolio they support and focus their
involvement on open source projects commonly used across as
many products as possible. Such a methodology drives priorities
and is a great way to remain focused on what’s essential,
justifiable, and fundable.

Partner with product teams
Be the upstream partner for product teams; they often feel
like they are working inside a pressure cooker, especially
in a consumer electronics environment. They often seem
understaffed, need more critical resources to support parallel
upstream development, and are under constant pressure for
feature delivery within tight schedules. In such an environment,
it is easy to overlook the benefit of upstreaming in favor of
short-term time savings, which can, unfortunately, lead to
technical debt that has a higher cost in the long term.
Open source teams can help by being a partner that focuses
on delivering the necessary code upstream, reducing this
technical debt.

13A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 5

RECOMMENDED PRACTICES FOR CONTRIBUTING TO OPEN SOURCE PROJECTS

Design & implement with upstreaming in mind
to increase the likelihood of patch acceptance.

Ensure the contribution improves or introduces
functionality that is useful for a broad base of users.

Stay involved in upstream development post
merging with the upstream project.

Document the code to make it easier to understand
and to lower the barrier for new contributors.

Upstream for the right reasons.
Upstreaming is not a code retirement strategy.

Listen to feedback, and act upon it—rework the
code based on the peer review process.

Follow proper coding style, and secure code guidelines.

Follow the processes set by the project for
submitting code, new features, etc.

Grow open source talent
Grow open source talent in specific technology areas relevant
to your products. Hiring a few resources from outside the
organization is easy, but this approach has several limitations.
The alternative approach is to convert your existing developers
into open source contributors via training on the technical
domain and open source methodology. You can then pair these
developers with a mentor to further expand their skills.
Encourage developers outside the open source team to learn
from and contribute to the open source community. We provide
as much help as we can with upstream code contributions.
Still, we need more resources and sometimes need a deeper
understanding of products that might be necessary to identify
where we can adequately upstream code. Better involvement in
the open source community from teams outside our own allows
us to get more critical code upstream and improves our ability to
interact with the community.

14A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

Conclusion
You must earn open source leadership, but you can lose it
through a lack of participation. Regular, ongoing participation
and contribution are the only ways to ensure your organization
maintains open source leadership.

Hopefully, this paper makes the task of improving your
enterprise’s open source practices more manageable. Following
some of the recommended practices will go a long way toward
developing internal open source expertise. You can leverage this
expertise to improve your products and services and reduce
the cost of code maintenance. Many organizations have had
considerable success through the use of these strategies.

Establish internal infrastructure to enable proper practices
for open source software consumption: policy, process,
checklists, and training.

Enable open source compliance practices within your
development process to ensure proper fulfillment of open
source license obligations once products ship.

Enable your developers to engage within open source
projects via a policy and a lightweight process and
access to legal support. Provide training on open
source development models and best practices.

Consumption

Compliance

Contribution

15A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 6

MASTERING OPEN SOURCE SOFTWARE
Master open source software requires you to mastering the three critical Cs:

Establish a policy and process to guide open source usage.1

2

3

4

5

6

7

8

9

10

Set up a team to oversee approvals for all open source usage.

Understand your open source product strategy and core values.

Provide the enabling IT infrastructure and tooling.

Setup an open source license compliance program.

Offer training to your staff and manager.

Track everything, measure, improve, and communicate.

Adopt open source practices for your internal development.

Identify incoming open source code through your software suppliers.

Identify key open source projects, and start contributing to them.

1

2

3

4

5

6

7

8

9

10

11

Establish a policy and process to guide open source contributions.

Set up a team to oversee approvals for all open source contributions.

Focus contributions in the areas that will enable your technologies.

Provide the needed IT infrastructure and tooling for contributors.

Offer training to your staff on contribution best practices.

Track contributions, measure impact, improve, and communicate.

Establish a mentorship program to train less experienced developers.

Provide contributions guidelines, How-To’s, Do’s and Don’ts.

Make open source legal support accessible to developers.

Hire from the open source communities you value the most.

Always follow community processes / practices of specific projects.

16A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

FIGURE 7

TOP 10 TIPS FOR MASTERING:
OPEN SOURCE CONSUMPTION
How can you build a healthy environment for open source consumption
within your organization? And how can you get ready for the next phase
(i.e., becoming a contributor)?

FIGURE 8

ELEVEN TIPS FOR MASTERING:
OPEN SOURCE CONTRIBUTIONS
How can you build a healthy environment for open source contributions
within your organization?

Acknowledgments
The author would like to express his sincere appreciation to his
Linux Foundation colleagues Hilary Carter, Jason Perlow, Melissa
Schmidt, Jessica Murillo and Barry Hall for their valuable reviews
and feedback. This report has benefited immensely from their
experiences, reviews, and contributions.

Feedback
The author apologizes in advance for any spelling errors or
possible errors and is grateful to receive corrections and
suggestions for improvements.

Linux Foundation resources
• E-book: A Deep Dive into Open Source Program Offices:

Structure, Roles, Responsibilities, and Challenges

• E-book: A Guide to Enterprise Open Source

• E-book: Open Source Compliance in the Enterprise

• E-book: Open Source Audits in Merger and Acquisition
Transactions

• Linux Foundation Open Source Best Practices for the
Enterprise Guides

• Linux Foundation Open Source Compliance Program

• TODO Group

• The Software Package Data Exchange®

• Linux Foundation Training & Certification

• Linux Foundation Events

17A ROAD MAP TO IMPROVE THE EFFECTIVENESS AND IMPACT OF ENTERPRISE OPEN SOURCE DEVELOPMENT

https://www.linuxfoundation.org/tools/a-deep-dive-into-open-source-program-offices/
https://www.linuxfoundation.org/tools/a-deep-dive-into-open-source-program-offices/
https://linuxfoundation.org/tools/guide-to-enterprise-open-source/
https://www.linuxfoundation.org/blog/blog/an-introduction-to-open-source-compliance-in-the-enterprise
https://www.linuxfoundation.org/resources/publications/assessment-of-open-source-practices-as-part-of-due-diligence-in-merger-and-acquisition-transactions
https://www.linuxfoundation.org/resources/publications/assessment-of-open-source-practices-as-part-of-due-diligence-in-merger-and-acquisition-transactions
https://www.linuxfoundation.org/resources/open-source-guides/
https://www.linuxfoundation.org/resources/open-source-guides/
https://compliance.linuxfoundation.org/
http://todogroup.org/
https://spdx.dev/
https://training.linuxfoundation.org/
https://events.linuxfoundation.org/

About the author
Dr. Ibrahim Haddad is the vice president of strategic programs at
the Linux Foundation. He focuses on facilitating a vendor-neutral
environment for advancing the open source AI platform. Haddad
leads the Linux Foundation AI & Data Foundation and the PyTorch
Foundation. His work and the work of both foundations support
companies, developers, and the open source community in identifying
and contributing to the technological projects that address industry

and technology challenges for the benefit of all participants. Throughout his career, Haddad
held technology and portfolio management roles at Ericsson Research, the Open Source
Development Labs, Motorola, Palm, Hewlett-Packard, Samsung Research, and the Linux
Foundation. He graduated with honors from Concordia University (Montréal, Canada) with a
Ph.D. in computer science. He is fluent in Arabic, English, and French.

 @ibrahimhaddad @IbrahimAtLinux

 IbrahimAtLinux.com Latest fun project: Tux NFT Club

Founded in 2021, Linux Foundation Research explores the growing scale of open source collaboration and provides

insight into emerging technology trends, best practices, and the global impact of open source projects. Through

leveraging project databases and networks and a commitment to best practices in quantitative and qualitative

methodologies, Linux Foundation Research is creating the go-to library for open source insights for the benefit of

organizations the world over.

Copyright © 2023 The Linux Foundation

This report is licensed under the Creative Commons Attribution-No Derivatives 4.0 International Public License.

To reference the work, please cite as follows: Ibrahim Haddad, Ph.D., “A Road Map to Improve the Effectiveness and Impact

of Enterprise Open Source Development,” Foreword by Jessica Murillo, The Linux Foundation, February 2023.

 twitter.com/linuxfoundation

 facebook.com/TheLinuxFoundation

 linkedin.com/company/the-linux-foundation

 youtube.com/user/TheLinuxFoundation

https://www.linkedin.com/in/ibrahimhaddad/
https://twitter.com/ibrahimatlinux?lang=en
http://ibrahimatlinux.com
https://tuxnft.club/
https://www.linuxfoundation.org/research/
https://linuxfoundation.org/
https://twitter.com/linuxfoundation
youtube.com/user/TheLinuxFoundation
https://inkedin.com/
youtube.com/user/TheLinuxFoundation

	Foreword
	Introduction
	Hire developers from the project’s community
	Support and allocate time for upstream contributions
	Create a mentorship program
	Offer training
	Participate in and host open source events
	Provide a flexible IT infrastructure
	Track developer code contributions
	Identify focus areas with a broad impact
	Foster internal collaboration
	Implement inner sourcing practices
	Recommendations and lessons learned
	Be patient
	Embrace a flexible IT infrastructure
	Adopt proper success metrics
	Use a lightweight approval process
	Share information
	Make strategic contributions
	Partner with product teams
	Grow open source talent

	Conclusion
	Acknowledgments
	Feedback
	Linux Foundation resources
	About the author

