
Enterprise Open
Source: A Practical
Introduction
By The Linux Foundation

www.linuxfoundation.org

If your company is involved in software engineering, it is very
likely you already use open source software in your products or
services; if so, you must have an open source strategy to ensure
you are making the best use of open source software while
protecting yourself from potential risks and liabilities. There has
been an influx of new companies and industries into the open
source ecosystem over many years, and each comes with a unique
set of obstacles to overcome while implementing an effective
open source strategy. Unfortunately, many companies fall into
the trap of reacting to the open source ecosystem rather than
adopting a proactive strategy that fully embraces open source
engineering.

This book provides a practical approach to establishing an open
source strategy by outlining the actions your enterprise can take
to accelerate its open source efforts. The information provided
here is based on the experience of hundreds of companies
spanning more than two decades of professional, enterprise open
source. This ebook will be most beneficial to software engineering
executives, development managers, compliance experts, and
senior engineers involved in enterprise open source activities.

Table of Contents
Introduction	 5

Why Open Source?	 7
Another Tool in Your Tool Box	 8
Software, Software, Software	 9
Adaptability to Various Business Models	 9
Product Dependency	 10
More Focused, Faster Path to Innovation	 10
Product Enablement	 11
Open Source R&D Is an Innovation Enabler 	 13

Lessons Learned from Two Decades of Enterprise Open Source Experience 	 14
Identify Reliance on Open Source Software	 15
Identify Open Source Skills Portfolio and Hire from the Community	 16
Develop Your Open Source Strategy	 16
Identify Current and Target Position on the Open Source Strategy Ladder	 18
Implement Open Source Infrastructure	 23
Join The Linux Foundation Compliance Initiatives	 27
Hire or Promote a Leader for the Open Source Team	 28
Formalize an Open Source Career Path	 28
Create or Outsource Open Source Training	 29
Create Meaningful Metrics to Track Progress	 30
Establish Relationships with Open Source Foundations	 32
Establish Plans to Release Proprietary Source Code Under an Open Source License	 32
Encourage Internal Collaborations	 33

Provide a Flexible IT Infrastructure 	 33
Host Open Source Events 	 34
Collaborate with Universities on Open Source R&D Projects	 34
Explore Inner Source Practices for Internal Projects	 35
Why Incorporate Open Source Principles?	 35
What Does this Mean in Practice?	 36
Important Open Source Workflow Practices for Enterprises	 36
Join the TODO Group	 38
Update M&A Practices	 38
Update Outsourced Development Agreements 	 38
Challenges You Will Face	 39

Conclusion	 41

References	 43

Introduction

The Linux Foundation6Enterprise Open Source: A Practical Introduction

Introduction

To establish open source software as a major driving
force for software development, your company
needs to develop business-level objectives and fully
identify any constraints faced for the use of open
source software. The goal is to establish consensus
and communicate business rationale behind new

policies. This book will help you develop a strategy that
transforms your efforts from a defensive approach
that reacts to open source software to offensive
market leadership that is fueled by strong open source
engineering.

The availability of enterprise grade open source software is changing the way organizations develop and
deliver products. The combination of a transparent development community and access to public source
code enables organizations to think differently about how they procure, implement, test, deploy, and
maintain software. This has the potential to offer a wealth of benefits, including reduced development
costs, faster product development, higher code quality standards, and more.

Why Open
Source?

The Linux Foundation8Enterprise Open Source: A Practical Introduction

Why Open Source?

The first step in this process is asking yourself what you want to get out of an open source engineering
effort, projects, or industry initiatives. There are quite a few ways to benefit from the use and development
of open source software, and there is no one-size-fits-all plan. Your strategy will be custom fit for your
organization, so it is important to consider all aspects of your company that could benefit from the
development and execution of an open source strategy.

For starters, open source software allows shared
development and lowers R&D cost by enabling you to
reap the benefit of billions of dollars of open source
software that can be harnessed to create better
products and services. Open source software helps
accelerate product development and enables faster
time to market especially when products needs and
requirements are aligned with upstream open source
projects. Achieving such an alignment is a necessary
aspect of an open source strategy.

Open source software development can also enable
you to drive industry leadership by providing strong
influence on the technologies used in products.
This can help commoditize competing products and
services as open source replaces critical components
of innovation ecosystems. Additionally, participating
in open source development gives you an edge in the
talent war because organizations with strong open
source R&D attract top software talent.

Another Tool in Your Tool Box

Figure 1: Open source is an important element among many other that help an enterprise

accelerate its innovation

Academic
Research

Industry
Collaboration

Open Source
Collaboration

Corporate
VC

Internal
R&D

Startup
Ecosystem

The Linux Foundation9Enterprise Open Source: A Practical Introduction

Why Open Source?

Much like how “location, location, location” is the
foundation for value in real estate, software has
become the defining value factor in virtually every
industry. To illustrate this concept, think about the
various phones you might find at your local electronics
store. They all come with amazing hardware, incredible
displays, customizable memory and storage capacities,
waterproof or water-resistant features, etc. The real
difference is seen when you interact with them: it
is software that makes them unique and this is the

tipping point that shifts a consumer from buying one to
another.

On a related note, looking at vertical software stacks
across most industries, we find the penetration of
open source to be astounding, ranging anywhere from
20 percent to 85 percent or more. No matter what
industry you are in or what product or software you
develop, you likely have a high reliance on open source
software.

If you put specific license requirements aside, open
source software supports a variety of business models
as illustrated in Figure 2. The figure shows the various
ways you can use open source software.

These use cases are proven and have remained true
for some time now, but their separation is mostly
for illustration purposes. Hybrids of these models
also exist, and these depend on a company’s specific
products or services strategy; it is common to find
a company that uses multiple modules for different
products or service offering.

Building open source
This is the most basic, yet most challenging model; it
involves creating and commercializing open source
software for direct return. With this strategy, your

Software, Software, Software

Adaptability to Various Business Models

Figure 2: Various ways of using open source software to support your specific business model

Open
Source

Open
Source

Open
Source

Open
Source

Your
Product

or
Service

Building
OSS

Building
with OSS

Building for
OSS

Building on
OSS

Your
Product

or
Service

Your
Product

or
Service

Your
Business

The Linux Foundation10Enterprise Open Source: A Practical Introduction

Why Open Source?

company focuses primarily on building open source
software and then provides value through expert
services and products. Red Hat is perhaps the best
example of a company that utilizes this model with an
incredible amount of success.

Building with open source
This model gives you the ability to create proprietary
software or services that work with or on top of
open source. With this strategy, your company builds
with open source software or relies on open source
software to provide basic low-level libraries and
components. This is a widely used model, and it is hard
to find a software product that does not incorporate
open source software.

Building for open source
Historically, this model has entailed creating software
for providing it as open source and adding value-
add services for revenue. Following this approach,
a company builds a product or service with the goal
to make it open source and build a business around
it. Another example would be companies that create
source code for the purpose of open sourcing it.

Building on open source
With this strategy, your company builds a product
on top of open source software, where open source
provides the foundation and you provide the higher
parts of the stack where the actual commercial value
resides. In this model, proprietary software or services
have strong dependencies upon OSS and almost
any new business today will heavily depend on this
development model and the open source ecosystem.

Open source software is often used at lower levels of
the software stack because these are the areas with

the most in common between organizations. Better use
of these low-level components allows you to focus your

Product Dependency

More Focused, Faster Path to Innovation

Organizations can rarely build a product without using
open source. Virtually everything we build relies on
open source in some way or another, and this also
applies to enterprises that use software as part of their
commercial offering. If you have valuable products
that rely on open source, would you want to turn your
back on billions of dollars worth of R&D? A planned

involvement in strategic open source projects can
prove immensely helpful for the company’s bottom line
in terms of leveraging external R&D and speeding up
time to market.

The Linux Foundation11Enterprise Open Source: A Practical Introduction

Why Open Source?

Product Enablement

own resources on differentiating at higher levels in the
software stack and improve upon the unique value
you provide to your consumers. This is a fundamental
business advantage that open source software enables.

To examine this concept, consider the following: do
people buy your products because of the specific

software libraries you use in them? Probably not.
Instead, they buy things based on the end user
experience, which is more often defined by the features
and improvements your product offers over your
competitors. Freeing yourself from building low-level
components frees up valuable resources to create
value in the places customers care about the most.

There are two ways open source software can enable
better product development (Figure 3):
1.	 Direct enablement: wherever there is a direct link

between internal activities related to open source
development and and the products or services the
company creates.

2.	 Indirect enablement: where the efforts spent on
open source activities are not directly related to

the products or services the company creates. This
impact can still be tracked via specific actions that
are taken as part of your open source activities.

Direct product enablement
An open source program can directly impact an
organization’s open source code development by
contributing code related to products and services.
A few ways open source teams can directly improve
product development include:
1.	 Fulfill open source development requests

from R&D and product teams. Product
teams typically have their own developers who
contribute to open source projects but, they
typically have less freedom because they are tied
to product development. Often, open source
developers embedded in a product team have a
hard time striking a balance between upstream
responsibilities (as a committer or maintainer) and
their role in product development. Therefore, an
open source group can receive requests, such as
“we need feature X implemented in open source Figure 3: Open source product enablement

+ =

Direct product
enablement
•	 Fulfill open source

development
request from
R&D and product
teams.

•	 Upstream internal
code into open
source projects.

•	 Implement and
upstream related
drivers.

•	 Support open
source compliance.

Indirect product
enablement
•	 Stabilize upstream

projects used
products,

•	 Participate in
internal policy
discussions.

•	 Effectively influ-
ence the upstream
projects via thought
leadership and
code contributions.

•	 Participate in
upstream technical
discussions.

Upstream deve
lopment enables
better products
•	 Less work for

product teams.
•	 Minimized cost to

maintain source
code.

•	 Better quality code.
•	 Faster development

cycles.
•	 More stable code

bases
•	 Improved reputa-

tion in upstream
projects.

The Linux Foundation12Enterprise Open Source: A Practical Introduction

Why Open Source?

project Y,” and the engineering team will deliver the
code for the product to the open source project.

2.	 Upstream internal code into open source
projects. Contributing source code is the best way
to gain influence in open source projects and build
a positive reputation for the contributing company.
One major goal of upstream development is to
minimize the technical debt with respect to open
source components used in products and services.
In other words, companies look to minimize the
delta between the open source branch and the
internal branch. If upstream contributions do
not happen, the product team will be stuck with
large code bases that are uncoordinated with
upstream, and they will spend much time back-
porting updates to their out-of-sync fork instead of
advancing the product.

3.	 Compliance support. Program managers can also
provide assistance to resolve compliance issues and
support the compliance team with the open source
compliance inquiries they receive.

Indirect product enablement
An open source program’s impact can go far beyond
contributing code to various open source projects.
From public relations and marketing, to legal support,
developer training, and more, an open source program
enables development in myriad ways:
1.	 Stabilize upstream code used in products.

Open source offices with dedicated engineering
resources can help stabilize the code of any open
source projects a company relies on by finding,
fixing, and testing bugs. This improves the code’s
overall value for all the project’s users, including
your company.

2.	 Participate in internal policy discussions and
decisions. Open source engineering has a different
set of requirements than traditional proprietary
software development. Open source team
representatives should be present at internal policy
discussions to ensure these policies continue to
enable open source development.

3.	 Influence the upstream projects via thought
leadership and code contributions. The only
way to influence an open source project is through
direct participation and code contributions. If
you want to provide leadership by influencing the
direction of developing or maturing technology,
you will need to have engineers that contribute the
necessary code to do so.

4.	 External technical discussions. Open source
engineers can influence communities through
participation in technical discussions; they do this
by being active on mailing lists and IRC channels to
participate in discussions and stay informed on the
latest project updates. Larger projects with formal
governance structures sometimes also offer the
ability to sit on technical steering committees for
well-qualified individuals.

5.	 Internal technical discussions. Internally,
open source developers can participate in
policy and architecture discussions to ensure
the organization’s decisions match the direction
of a specific project community. Open source
developers should be present for any strategy
discussions related to long-term planning for
products that rely on open source code.

The Linux Foundation13Enterprise Open Source: A Practical Introduction

Why Open Source?

Open source R&D is one of many efforts that
contribute to a company’s overall innovation pipeline
(Figure 4). It can be integrated with many practices
including academic research, corporate VC, industry
collaboration, internal R&D, and startup ecosystems to
compound the effects each offers. Open source R&D
works best when its impact is shared amongst multiple
business initiatives.

Open Source R&D Is an Innovation Enabler

Figure 4: Open source is one of many innovation enablers

Academic
Research

Industry
Collaboration

Open Source
Collaboration

Corporate
VC

Internal
R&D

Startup
Ecosystem

Innovation pipeline

Lessons
Learned from
Two Decades
of Enterprise
Open Source
Experience

The Linux Foundation15Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

December of 2000 marked a major milestone in the history of open source when IBM pledged to spend $1
billion on Linux R&D. IBM was a true pioneer in the enterprise world, betting on Linux and open source
when very few companies were doing so, especially not at that scale. IBM had to learn a lot about working
with open source software and the various communities they were involved in. This was the starting point
for open source adoption in the enterprise and other companies have since followed, first by the dozens,
then by the hundreds.

Thousands of companies are still entering the open
source ecosystem and wanting to be part of it today, as
it becomes the new normal of software development.
The question is: How can you minimize the enterprise
learning curve and speed up the process of getting it
right? In the following sections, we’ll explore several
lessons learned from nearly two decades of enterprise
experience with open source software.

It’s worth mentioning that in addition to implementing
these practices, you’ll need to lead a cultural shift from

traditional software development practices to a more
open and collaborative mindset. Internal company
dynamics need to be favorable to open source efforts.
As an open source leader inside your organization,
you will face challenges in terms of funding resources,
justifying ROI, getting upstream focus, and so forth.
These challenges often require a major shift in mindset
and a lot of education up the chain. We will explore
some of those challenges in a later section.

The first step toward improving your company’s open
source engagement is identifying where the company
relies on open source software. The level of reliance
and the level of importance of these open source
components to the product portfolio, companies have
several options to chose from. One option is to focus
on software used by many business units. Another is
to focus on software that poses more compliance risk
than others (e.g., mobile apps and embedded hardware
may pose more compliance issues than your datacenter
code.) Such approaches will allow you to show a return

on investment across multiple business units or across
high risk areas and increases your chances for more
funding and support.
Focus your contributions on upstream projects that
directly benefit the company’s strategy and products.
It’s easy to get carried away hopping between different
interesting projects; in an enterprise setting where
open source engineering is considered a cost center,
you should focus on projects that support product
development.

Identify Reliance on Open Source Software

The Linux Foundation16Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

It’s beneficial to do a yearly review of the company’s
product portfolio in an effort to be involved in open
source projects that are commonly used across as
many products as possible. This list can then be
prioritized based on several factors to focus efforts

on the top projects given limited resources. A
methodology that drives your priorities is a great way
and a forcing function to remain focused on what is
important, justifiable, and fundable.

Once you have identified the most important ways in
which your company relies on open source, you can
begin to identify where you need to grow internal
talent to match the required open source skill set. It
takes considerable time to grow internal open source
expertise, and hiring key developers is a critical step
that allows your organization to quickly gain skills,
recognition and mentorship capabilities.

Two or three people are a great start toward making a
noticeable impact in a large project such as the Linux
kernel, attracting further hires, and allowing sufficient
resources to mentor existing junior developers.

The goal is to find people who have enough peer
recognition to be influential in the community; there
are typically four pillars to consider when hiring:
technical domain expertise, open source methodology
and experience, working practices and alignment
between corporate interests and the candidates
interests. It is very hard to motivate a senior open
source developer when their personal interests and
skillsets do not meet with corporate interests in a given
project. A Linux memory management expert may not
be interested in working on file systems, a corporate
priority. Therefore, finding a match in interests is
critical for a long-lasting relationship.

Identify Open Source Skills Portfolio and Hire from
the Community

Develop Your Open Source Strategy
There are many questions to answer when determining
your open source strategy, and they should be
answered early in the process.

An open source strategy should address four key
requirements (Figure 5):
•	 The open source projects it aims to address,

•	 The respective open source project community it
aims to engage with,

•	 The internal enterprise open source governance,
and

•	 The internal enterprise culture and whether or not
it will be enabler of open source efforts.

The Linux Foundation17Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

The following sections will cover the three primary
questions you will need to go over before you create
your open source strategy.

Although you can choose from several strategy
objectives, some objectives are common for most
companies that use and develop open source software:
•	 Reduce development costs.
•	 Improve the quality and flexibility of products.
•	 Achieve a faster time to market for products.
•	 Increase engineering capacity through community

engagement.
•	 Broaden and deepen developer community

commitment to your open source efforts.

Common benefits seen by customers of companies

that use and contribute to open source software
include:
•	 Lower cost products and applications.
•	 Higher quality and more reliable products and

applications.
•	 New products, capabilities and applications

delivered to the market sooner.

How can an open source strategy help you
achieve overall corporate objectives?
The first question you answer will identify where open
source software fits within your overall corporate
objectives. Companies can benefit from open
source use and contribution in many areas, and your
strategy can be tailored to fit your specific needs. This
determination will enable you to focus on the areas
where open source can best benefit your company. The
objectives you set can include any of the following:
•	 Set a long-term, high-quality roadmap to take

leadership position within the product ecosystem.
•	 Reduce the cost and complexity of building and

maintaining products or services.
•	 Build a differentiated position that targets higher

profit margins.
•	 Commoditize competing products or services by

building open source alternatives.
•	 Improve overall quality of products and services.
•	 Increase external visibility and brand recognition

through public open source involvement.

How can it help you achieve your IP
strategy?
Open source licensing is different from proprietary
licensing and your company must account for how

Figure 5: The four poles of open source strategy

Products

ProjectsCulture

CommunityGovernance

The Linux Foundation18Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

differences in licenses affect your ability to benefit
from the use and development of open source
software.

The objectives you set can include any of the following:
•	 Determine a licensing strategy that best allows

the company to benefit from external involvement
while enabling better proprietary products.

•	 Mitigate intellectual property risk by ensuring
compliance with open source software used in
products and services.

•	 Enable greater differentiation in proprietary
intellectual property by improving core open source
components.

How can it help you grab opportunities
that are otherwise unattainable?
Open source also offers some unique opportunities
that are only be obtainable through an open source

strategy. Common objectives that fall under this
category include:
•	 Provide market leadership by focusing R&D

investment to improve key open source
technologies that are complementary to
differentiated capabilities in products.

•	 Defend existing market positions by supporting key
open source initiatives and consortia, selectively
releasing proprietary capabilities as open source to
disrupt competitors or competing markets, and use
open source to level the technology playing field.

•	 Drive cost of goods sold improvements by
incorporating readily available open source
commoditized capabilities and market accelerators
in products. The cost per product delivered will
decline over time in as a result.

Identify Current and Target Position on the Open Source
Strategy Ladder
There are four primary strategies to choose from
when it comes to open source software: consumption,
participation, contribution and leadership. Each
strategy requires you to be successful at the previous
strategy, and how far your company goes up this ladder
is entirely up to you.

Figure 6 illustrates these four primary open source
strategies/position and you can notice that they
overlap as you transition from one position into

another. Typically, the early stages, consumption and
participants, are engineering driven when engineers
start using various open source components based on
their technical merits to speed up development and
have limited participation in select projects, either to
join the conversation or make small contributions. With
time, this usage becomes known to higher levels in the
company, and when it gains tractions, such involvement
become business driven based on determined strategy.

The Linux Foundation19Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Exposed

Consumer

Participant

Contributor

Leader

Managing

Participating

Business strategy drivenEngineering driven

Driving

Involvement w
ith

Open Source

Some companies achieve their goals simply as
consumers and are content to stay at that level, while
other companies have different ambitions and want to
push higher in the rank to attain a certain leadership
position. There is a good chance you are already at
one of these levels of the ladder, so it is important to
identify both your current position in the ladder as well
as your targeted position and chart a path to move
from the current position to the target position.

Figure 6: Stages of open source involvement

The Linux Foundation20Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Strategy: Open Source Consumption
The most common starting point for organizations is
as an open source software user in their commercial
products. Aggressively consuming open source
components will increase your ability to differentiate
and reduce overall time and cost to deliver commercial
products. Here are the necessary components of the
open source consumption strategy:
•	 Use a strategic classification scheme to guide

decisions on what open source software to consume.
•	 Ensure the company meets all obligations of its use

of open source software.

•	 Deploy automated workflow software for
evaluating/approving open source usage.

•	 Establish an Open Source Review Board (OSRB)
immediately to serve as a clearinghouse for all
Open Source activities.

•	 Create incremental investment in headcount
and infrastructure in engineering, product
management, and legal to manage a complex mix
of closed source / open source software.

Once your company is successfully using open source
software in products or services, you can expand your
strategy to participate in the open source community.
Unless you have already hired experienced developers
from the community, you will first need to engage
more closely with the community to increase your
visibility and to begin attracting the talent you need.
Here are the necessary components of the open source
participation strategy:

•	 Monitor community communication platforms like
chat servers, mailing lists, forums, and websites to
stay informed about project developments.

•	 Attend relevant conferences and meetups to
establish a relationship with the community.

•	 Sponsor project events and foundations to improve
visibility within the community.

•	 Educate developers on how to participate in and
contribute to open source projects

Strategy: Open Source Participation

Strategy: Open Source Contribution
Once you are ready to build on your company’s
participation and begin contributing code to an open
source project, you need to selectively engage with
targeted projects and communities to drive you

company’s needs. Contributing to strategic open source
projects can help your organization gain additional
value as code contributions can help shape future
features in the project that meet a company’s needs

The Linux Foundation21Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

As a tech company, you are evaluating, using, and
deploying open source software already. You are likely
participating and maybe even contributing to projects
too. Ideally, your open source program is guiding these

efforts, abating risks and leveraging your participation
to benefit your strategy. Figure 7 illustrates the stages
of participation with an organization. Whereas the
earlier stages take place with or without guidance,

Here are the necessary components of the open source
contribution strategy:
•	 Hire a staff director to lead open source strategy

and manage the OSRB.
•	 Hire contributors and committers to key open

source communities that are critical to your
products.

•	 Deploy open source collaboration tools to support
open source usage and contributions.

•	 Add open source developer resources.
•	 Incrementally invest in engineering, product

management, and legal to engage with existing
external communities.

Strategy: Open Source Leadership

Transitioning

The final step in the open source strategy ladder
is leadership. This scenario builds on all of the
prior scenarios to capitalize on emerging trends in
technology to establish a leadership position.
Leadership roles in existing open source communities
are earned by establishing trust with the project
members and by maintaining a high level of continuous
contribution to the project.

This scenario requires significant investment in
targeted open source communities and consortia
to establish leadership agenda. It will also require
incremental investment primarily in engineering,
product management, and legal to establish leadership

in external communities and industry consortia. Here
are the necessary components of the open source
leadership strategy:
•	 Increase engagement with targeted open source

communities.
•	 Selectively engage with open standards to drive the

company’s needs.
•	 Engage with open source foundations.
•	 Establish an open source project, organization, or

foundation.
•	 Incrementally invest in engineering, product

management, and legal to engage with existing
external communities.

The Linux Foundation22Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

achieving success at the leadership stage can only take
place with an open source program in place.

Figure 7 illustrates the four key strategies and the
major activities within each one. The purpose is to
highlight the gradual proliferation of open source
and the actions an enterprise can take to accelerate
adoption and mastery of contributions.

Figure 7: How to advance from one open source strategy to another by increasing efforts and activities.

Evaluating

Using

Deploying

Interacting with communities

Consumption

Participation

In
vo

lv
em

en
t/

Ef
fo

rt
s

Time

Contribution

Leadership

Increased interactions

Open source organization

Minimal contributions

Major, more scaled contributions

Starting new initiatives

The Linux Foundation23Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Implement Open Source Infrastructure

Open Source Consumption and Compliance Infrastructure

Once you have identified your company’s open
source strategy, you need to build infrastructure to
support your open source engineering efforts. Figure
8 shows the four key pillars your infrastructure needs
to support: community engagement, open source
contribution, open source compliance, and open source
usage.

The community is unique within these pillars because
it involves all interactions between the company and
the specific open source projects that the company
is involved in from a consumption, compliance, and
contribution aspect.

Consumption and compliance are closely related,
especially in an enterprise setting where consumption
usually equates using open source in a product or part
of a service. Therefore, these core elements are often
represented together, at least from an infrastructure
perspective as any commercial use of open source

software requires compliance with the corresponding
licenses.

Figure 9 illustrates the various components required in
building an infrastructure to support consumption and
compliance.

Figure 8: Core elements in an open source infrastructure

Contribution

Compliance

Consumption

Co
m

m
un

it
y

The Linux Foundation24Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Figure 9: Open source consumption and compliance infrastructure

Compliance Internal site
(Educational)

Usage and
compliace policy

Integrate
compliance in the
development QA

process

Compliance
team (core and

support)

Training on
company policy

Source code
scanning

OpenChain

SPDX

Open Compliance
Program

TODO Group

Guidelines and
best practices

Linkage analysis

Project
management

Project
management

Software Bill of
Material

Automation of
online forms and

workflow

Training on open
source licenses

New employee
orientation

Checklist for
product team

Checklist for
developers

Checklist for SW
procurement

IP evaluation tool

SW Inventory
managementCompliance

mentorship

Professional
formal training

Invited speakers

Scoreboard and
success metricsIntegrate

compliance
tools with build

systems

Policy on open
source licenses

Policy on mixing
code under

different licenses

Obligation
fulfillment

Distribution

Notices

Auditing

Usage

External site
(Obligation
fulfillment,
source code
distribution)

Internal
messaging

External
messaging

Managing
inquiries

Legal
(Risk tolerance)

M&A, Corporate
Development

Software
Procurement

Strategy EducationPortals ToolsPolicy & Process InitiativesDevelopment Team

The Linux Foundation25Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Framing the strategy
Open source compliance should include a framework
for strategies related to:
•	 Legal compliance and risk tolerance,
•	 M&A and corporate development,
•	 Software procurement, and
•	 Managing compliance inquiries.

Defining the processes
The open source program office defines the processes
and policies for how your company will handle code
distribution, audits, notices, and usage. Additionally,
the program office will publish internal policies
and provide training highlighting which licenses are
acceptable for which kinds of uses, how licenses can
be combined and how your company will enforce
compliance.

Establishing the team
Establish dedicated teams to ensure compliance. Agree
upon their success metrics.

Getting the tools
Consider investing in certain source code scanning
tools, as they help ensure compliance by automating
the auditing.

Integrating into the process
Integrate open source compliance directly into the
development and QA processes. Ideally, you will
integrate compliance tools directly into the build
systems.

Communicating the plan
You will need two websites to support your open
source program. Publish your internal open source
policies and processes on your intranet site. This
is where you explain open source compliance to
employees and guide them to your internal services
to check on licenses, obligations, and approvals. You
will also want an external website where you publish
information promoting your open source projects,
announcing news, and potentially potentially publishing
compliance reports, notices, and source code.

Assisting other stakeholders
Ensure that everyone who deals with software
procurement, development, distribution, and hiring is
aware of open source compliance. Establish a process
where they can easily raise questions and get answers.

Getting involved with the community
Certain foundations focus specifically on open source
procurement, distribution, and compliance. It can be
valuable to be involved in these foundations and have
a strategy for what the company will achieve from
involvement. In this specific case, The Linux Foundation
hosts several initiatives that can support and enable
your consumption and compliance activities. Please
refer to the references sections for pointers to these
initiatives.

The Linux Foundation26Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

When you are ready to expand into contributing to
open source projects (based on your internal priority
map), you will need an infrastructure to support these
contribution efforts and set a framework that will help
you enforce company policy related to what can and
cannot be contributed to any given project. This will
also help avoid ad hoc contribution practices.

An open source contribution infrastructure has three
core elements (Figure 10):
•	 Contribution building blocks that include a policy

and process, a team that is responsible for vetting
the contributions going to open source projects,
and general guidelines.

•	 An open source group dedicated to open source
participation, and involvement in relevant projects

•	 Participation in open standards relevant to the
development activities or open source projects you
are involved in.

Contribution enabling elements
Contribution support is the most critical component of
open source contribution infrastructure, and includes:
•	 A contribution policy and process that express the

company’s policy and how it is executed via the
contribution process.

•	 Guidelines to follow when contributing to open
source projects.

•	 Training to ensure development teams are aware
of the company policy and process with respect to
contributions.

•	 Contribution approval team that is responsible for
vetting all contributions.

•	 Priorities highlighting the areas where contributions
are mostly needed in support for product
development efforts.

Dedicated open source team
A team dedicated to upstream contributions can be
extremely valuable and should be hired from the

Open Source Contribution Infrastructure

Figure 10: Open source contribution infrastructure

Policy and
process on project

contributions

Guidelines and
contribution

training

Contribution
Approval Team

Increase
participation in
key open source

projects

Establish open
source group

Hire from open
source projects

Support &
participate in open
source foundations

Host open source
events

Support
communities

of projects you
depend on

Establish/recognize
open source career

path

IT infra to support
open source

development

Participate in
relevant open

standards

Consider open
sourcing internal

technology
as reference

implementation

Contribution Dedicated Group Open Standards

The Linux Foundation27Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

community to support open source foundations, build
IT infrastructure that is modeled after the open source
community, and add open source metrics to developer
HR career paths.

Involvement with open standards
Participation in relevant open standards bodies and
trade organizations is often a critical component of

the open source contribution infrastructure as you
need you need people who are responsible for keeping
the company up to date on any changes to relevant
standards.

The Linux Foundation hosts several compliance
initiatives that aim to improve compliance with licenses
of free and open source software. Two prominent
projects are OpenChain and the Software Package
Data eXchange® (SPDX®). It is highly recommended to
participate in these initiatives in support of your open
source compliance practices.

OpenChain
The OpenChain Project helps to identify and share
the core components of a high quality Free and
Open Source Software (FOSS) compliance program.
OpenChain builds trust in open source by making
things simpler, more efficient and more consistent. It
is the industry standard for managing Open Source
compliance across the supply chain.

The OpenChain Project builds trust in open source by
making open source license compliance simpler and
more consistent. OpenChain consists of three core
elements:
•	 The OpenChain Specification defines a core set		

of requirements every quality compliance program
must satisfy.

•	 The OpenChain Curriculum provides the
educational foundation for open source processes
and solutions, whilst meeting a key requirement of
the OpenChain Specification.

•	 The OpenChain Conformance allows organizations
to display their adherence to these requirements.
The result is that open source license compliance
becomes more predictable, understandable and
efficient for participants of the software supply chain. 	

Software Package Data eXchange®
The Software Package Data Exchange® specification
is a standard format for communicating the
components, licenses and copyrights associated with
software packages.
	
The SPDX standard helps facilitate compliance with free
and open source software licenses by standardizing the
way license information is shared across the software
supply chain.

Join The Linux Foundation Compliance Initiatives

https://www.openchainproject.org/spec
https://www.openchainproject.org/curriculum
https://www.openchainproject.org/conformance
https://spdx.org/

The Linux Foundation28Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Hire or Promote a Leader for the Open Source Team

Formalize an Open Source Career Path

To ensure strong leadership of your open source
engineering effort it’s important to hire someone with
a deep understanding of the methodology behind open
source engineering. There are a number of traits this
individual should possess:
•	 A strong engineering background,
•	 A solid understanding of common open source

licenses and obligations
•	 Knowledge of industry practices
•	 Knowledge and experience in establishing

corporate-wide policies and processes

•	 Technical knowledge related to the company’s
products

•	 Historical perspective on open source
•	 Knowledge of community consensus and practices
•	 Contacts in the key open source project communities
•	 Contacts in open source organizations

The TODO Group has published a template job
specification for this role that you can customize
to your specific needs; it is available from http://
todogroup.org/blog/sample-job-req/.

Create an open source developer track in your human
resources (HR) system so people hired as open source
developers have a good sense of how their career will
progress within the company versus other non-open
source developers. Additionally, you should adjust
performance-based bonuses to include goals related
to open source development work. The metrics by
which the performance of proprietary or closed source
developers are measured are often different from
those of open source developers.

At some companies, there is a clear distinction between
open source and non-open source developers. However,
in many companies, the line is much more fluid
depending on organizational structure and open source
strategy. In reality, all modern developers have to work
with open source, there are no closed source developers.
Rather, sometimes their code stays inside the company
and sometimes it is published (contributed to a third
party or published as a new project). Your HR track and
incentives should reflect your organization’s unique
structure and approach to open source.

SPDX reduces redundant work by providing a common
format for companies and communities to share

important data about software licenses and copyrights,
thereby streamlining and improving compliance.

http://todogroup.org/blog/sample-job-req/
http://todogroup.org/blog/sample-job-req/

The Linux Foundation29Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Finally, allow a work from home policy for open source
developers, regardless of the general corporate policy
related to this. Lately, we have witnessed a reverse
in work from home policies across companies where
many have either banned or created strict limitations to
working from home. In the open source world, a work

from home policy is almost mandatory because open
source experts are located all over the planet, and this
policy is often the only way to hire them. There are
operational benefits to a flexible work policy as well.

Create or Outsource Open Source Training
Education is an essential building block in an open
source program office, and it falls into two categories:
technical training to expand open source technical
knowledge and compliance training to ensure that
employees possess a good understanding of policies
governing the use of open source software.

The goal of providing this training is to raise awareness of
open source policies and strategies and to build a common
understanding around the issues and facts of open source
licensing as well as the business and legal risks of incorpo-
rating open source software in products and/or software
portfolios. Training also serves as a venue to publicize and
promote compliance policies and processes within the
organization and to foster a culture of compliance.

It is impossible for any company to hire all the senior and
most expert developers in a given domain. This concept
applies to the Linux kernel and any other prominent
open source project. Therefore, you must have a way
for your company to increase the competence of its
developers in a given technical domain. In addition to
technical training, you will also need training to teach the
open source development model and the basic concepts
of open source legal compliance.

Sample training courses include:
•	 Technical training that cover specific areas of the

open source software. This is usually presented by
maintainers or senior developers to grow internal
open source expertise; this expertise is vital to
pass on given how challenging it is to hire expert
developers from open source communities.

•	 Open source development methodology course that
teaches staff new to open source how open source
development works and how to best get engaged.

•	 Open source compliance course that teaches
staff the basics of compliance principles and open
source licensing. This should also be used to inform
them of your company’s policy and process.

The OpenChain curriculum is a resource that is
available to educate individuals involved with the
software procurement process about open source
compliance. In addition, The Linux Foundation offers
a free “Compliance Basics for Developers” training
course to educate developers on how open source
compliance relates to their work.

https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers

The Linux Foundation30Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Create Meaningful Metrics to Track Progress

Number of Patches Submitted or Committed

Once you start implementing open source best
practices, you will need proper metrics to drive the
desired development behavior. However, the traditional
metrics often used in product organizations do not
apply in the context of open source development.

For example, tracking the number of changesets or
lines of code can be a good metric for open source
development impact, but you might have multiple
instances of desired functionality being implemented
upstream because your open source developers lobby
for support from the community. In this case, the
number of changesets or lines of code doesn’t matter
nearly as much as the technical leadership the team
members provide to get code upstream and reduce
the company’s downstream maintenance efforts.
Therefore, the metrics you track should account for
both activities.

To start, create an internal system to keep track of
developer contributions and impact. Metrics can
include upstream development, support to product

teams, knowledge transfer (mentoring, training),
visibility (publications, talks), launching new open
source projects, and establishing internal collaboration
projects with other teams or groups.

There are several toolkits that help track source code
contributions; for instance, The Linux Foundation uses
a tool called gitdm, which produces the data reported
in the annual Linux Kernel Development Report. This
can be used to track both individual developers as well
as the overall team performance. Individual developers
can be tracked for the number of patches they submit,
the patch acceptance rate (patches submitted divided
by patches accepted), and the type of patch (e.g., a new
feature, enhancement of existing functionality, bug fix,
documentation, etc.). Other tools like GrimoireLab can
also be used to chart and visualize the metrics you want
to track.

The rest of this section will cover some of the metrics to
consider tracking.

The number of patches that are submitted or
committed to an open source repository is the
most basic metric to track and can be used to
gather a general idea of activity in a project. It
includes information about who authored the code,

which project it was submitted to, and when it was
committed. It should never be used on its own;
rather it should either be used along with the other
metrics below, or to identify starting points for further
qualitative analysis.

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/

The Linux Foundation31Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Type of Patch

Patch Acceptance Rate

Patches Committed as Part of Collaboration Projects

Visibility Metrics

There is a variety of reasons for why code might be
submitted to an open source project and there is a
different type of value in each of them. Depending
on what sort of problem you need to solve with a
project, you can incentivize certain types of code,
such as:

•	 Bug fixes
•	 Improvements to existing features
•	 Implementation of new minor features
•	 Implementation of new major features
•	 Contribution to test cases and test code
•	 Contribution to documentation

Just because you write code for an open source project
does not mean you are guaranteed to get it accepted all
the way through the peer review process; sometimes it
requires multiple revisions over an extended period. The

ratio of patches committed to a project vs. the number
of patches accepted to the code base is a useful metric
to track how successful your engineers are at getting
code accepted the first time.

If your open source engineers are submitting code
directly on behalf of other teams, it can be useful to
track their impact. This metric allows you to track

the upstream work that results directly from internal
collaborations with other teams, or collaborations with
external organizations like universities.

One of the benefits of open source engineering is soft
influence that can be gained by being a leader within
a community. This is established when employees
improve their own visibility within their respective open
source communities, and you can use metrics to track

the number of publications, blog posts, conference
presentations, media mentions, and more to encourage
open source engineers to spend time improving their
open source leadership.

The Linux Foundation32Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

New Projects and Initiatives

Establish Relationships with Open Source Foundations

Establish Plans to Release Proprietary Source Code Under an
Open Source License

If one of your goals is to create new open source
software that fills unmet needs, then you can track the
number of new projects launched to incentivize teams to
create them.

Contributions to Open Standards
In some cases, a direct link exists between a standard
effort and an open source implementation that

provides a reference implementation to the standard.
In these cases, it can be beneficial to track employee
contributions to the standard.

Open source foundations are a great resource to expand
your impact on an open source community. The best
place to start is with the foundations that host initiatives
that are relevant to your products or interests. Many
companies find it worthwhile to get involved with
well-known, established foundations such as The Linux
Foundation, Mozilla Foundation, or Apache Software

Foundation. If you are concerned primarily with the legal
aspects, you can get involved with organizations such
as the Software Freedom Law Center or the Open
Invention Network. The primary goal is to identify
opportunities that arise from getting involved with an
open source organization that supports the ecosystem
your company relies on.

Many enterprises find checklists and templates useful
for guiding code releases under an open source license;
these minimize the time necessary to figure out what
needs to be done. Granted, all cases are different in
terms of what is being released as open source and for
what purpose it is being released, but the mechanics are

the same. Additionally, every time you follow these tools,
it is a good idea to update and add any notes that will
help improve the process in the future.

The Linux Foundation’s guide on Starting an Open
Source Project was created to help enterprises who

https://www.softwarefreedom.org/
http://www.openinventionnetwork.com/
http://www.openinventionnetwork.com/
https://www.linuxfoundation.org/resources/open-source-guides/starting-open-source-project/
https://www.linuxfoundation.org/resources/open-source-guides/starting-open-source-project/

The Linux Foundation33Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

are already well versed in open source learn what they
need to know to start their own open source projects.
The guide goes through the process, from deciding on
what to open source, to budget and legal considerations,
and more. It also offers a sample checklist that covers
all major tasks that need to be completed from

the conceptual phase all the way to the launch and
maintenance phase of the project. This checklist offers
a great example of a guide your company can use so
various teams have access to knowledge that improves
the overall understanding of what’s involved with the
open sourcing process.

Encourage Internal Collaborations

Provide a Flexible IT Infrastructure

Internal collaboration with other business units that
use the same open source projects in their products
is a great way to expand the impact of an open source
engineering team. These collaborations can take one or
more of many forms, including:
•	 Deliver training to product developers
•	 Run a workshop on a specific topic or problem
•	 Develop new functionality
•	 Troubleshoot and resolve issues and bugs
•	 Upstream existing code for which they have no

resources to do
•	 Help get them off an old fork and onto a mainline

version

These internal collaborations serve many purposes, but
two are particularly important:

•	 They present incredible visibility opportunities for
the open source team with other organizations or
teams within your company.

•	 They allow you to become internal experts on
open source, opening new opportunities such
as becoming the upstream partner to R&D and
product teams

Internal collaborations are a challenge, especially in
large companies. Open source makes that challenge a
little less difficult given the open nature of the software
and the fact that being aligned with upstream has huge
benefits; other teams are typically eager to collaborate
to make that happen.

Provide a flexible IT infrastructure that allows open
source developers to communicate and work with

the open source projects with minimal challenges.
Additionally, set up internal IT infrastructure that

https://www.linuxfoundation.org/resources/open-source-guides/starting-open-source-project/%237

The Linux Foundation34Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Host Open Source Events

Collaborate with Universities on Open Source R&D Projects

Support your developers to attend and participate in
open source conferences and events, including local
community meetups, hackathons, and summits. Such
participation helps them connect at a personal level with
their peers, build relationships, have face-to-face social
interactions, and participate in technical discussions that
guide the project’s direction.

If your developers have work that others might be
interested in, help these developers prepare content
to present. Finally, you can also sponsor events, both

big and small, to increase external visibility within the
project’s community. These events are also a great
venue to look for talent!

A good place to start is to consider Linux Foundation
events and identify the ones that are closely related
to the technologies you’re involved in. You can either
send your own developers that are looking to expand
their knowledge or influence or send management
representatives to identify important individuals and
recruit new talent.

Many universities and schools are eager to work with
companies who offer learning opportunities for their

students, because it provides the opportunity to get
real world software development experience. This

matches the tools used externally to help bridge the
gap between internal teams and the open source
community. Much of your infrastructure will naturally
evolve along with your organization’s open source
culture, but it is important to be aware of the necessity
and plan for its implementation.

There are three primary domains of IT services that
are used in open source development: knowledge
sharing (wikis, collaborative editing platforms, and
public websites), communication and problem solving

(mailing lists, forums, and real-time chat), and code
development and distribution (code repositories and
bug tracking platforms). Some or all of these tools will
need to be made available internally to properly support
open source development. These open source practices
typically require an IT infrastructure that is free from
many of the standard limiting IT policies, so there is a
chance this might conflict with existing company-wide
IT policies. If so, it is vital to resolve these conflicts and
allow open source developers to use the tools they are
familiar with.

https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

The Linux Foundation35Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

relationship is often beneficial to the companies involved
because it can be a great way to develop and attract
new talent in existing open source communities. This
is particularly useful for projects with a shortage of

experienced developers. You can’t hire all the smart
people in the world, so you’ll need to find a way to tap
into new knowledge and influence favorable outcomes
in external projects.

Explore Inner Source Practices for Internal Projects

Why Incorporate Open Source Principles?

Inner source is a term that describes the process of taking
the lessons learned from open source development
methodology and applying them to the development
methodology used inside the company. The goal is to
incubate the same values in the enterprise as those
you get out of a collaborative development model and

methodology. Inner source methodology enables new
employee-to-employee relationships that are cross-
functional and touch on multiple product domains. This
same relationship will exist between your employees and
members from the open source community, which also
often include other employees from your company

Why incorporate open source principles for your
internal organization? For starters, they work and
particularly at large scale. These processes have
enabled the success of some of the largest software
projects in the world, and they are proven methods
adopted by many Fortune 500 companies.

Adopting innersource methodology often brings a
wealth of benefits:
•	 Faster release cadence
•	 Improved source code quality
•	 Increased innovation
•	 Increased internal information sharing
•	 Reduced development costs

•	 Increased internal collaboration
•	 Increased moral retention
•	 Increased internal communication

Doing this also prepares your company to work effectively
with external open source communities because it allows
your employees to interact with both other employees
and external community members without context
switching. Incoming employees will also be able to adapt
more quickly because they are often already familiar
with this development model. Finally, your partners are
probably already adopting many of these development
practices, so your own adoption can improve your
integration with the commercial ecosystem.

The Linux Foundation36Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

What Does this Mean in Practice?

Important Open Source Workflow Practices for Enterprises

To make this a reality, you need to start opening
source code bases to all employees in the company,
and anyone should be allowed to use them, contribute
back to them, or fork them as needed. Ideally, you will
have a team that is responsible for code stewardship
and that makes sure code submissions are reviewed

and applied. Companies that use inner source methods
typically use mailing lists, chat rooms, and ticketing
systems that are fully open to anyone at the company
for discussing changes and asking questions. Please
check the references for more information on how to
implement inner source practices.

There are several essential steps to implementing
proper inner source practices:
•	 Visibility
•	 Forking
•	 Pull/Merge Requests
•	 Peer Review
•	 Release Early, Release Often
•	 Testing
•	 Continuous Integration
•	 Documentation
•	 Issue Tracking

The remainder of this section will cover each of these
concepts.

Visibility
All internal software projects should be visible
to all employees in the company by default, and
communication channels should be as open as
possible. This enables cross-pollination between teams

and provides an opportunity for employees to feel a
shared sense of responsibility. It also facilitates ad-hoc
communications and relationship building between
people in your organization.

Occasionally projects require extra protections because
of sensitive information related to their development,
and these can be kept private to select groups.
However, these should be the exception rather than the
rule.

Forking
Everyone who can see internal code should be allowed
to create a copy (fork) where they can make changes
freely; these forks should then be made visible to
everyone for them to do the same. This encourages
greater understanding and better integration of your
software stack across the various teams within your
organization and results in beneficial cross-pollination.

The Linux Foundation37Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Pull/Merge requests
People outside the project should be allowed to
suggest changes to the project itself. You should
encourage employees to welcome participation
from teams outside their own and consider their
contributions.

Peer review
Peer review is an essential component of open source
development because is reduces variations in style,
and ensures code keeps up with the project’s quality
standards. Code should always be reviewed by people
with a strong understanding of the code base prior to
being committed. These reviewers should also provide
guidance to the submitters to refine their style over
time and increase the likelihood of acceptance.

Release early and often
More frequent releases with fewer features and
regular update releases are important for improving
code development efficiency because it makes release
integration and testing much easier. Additionally,
it makes it easier for bugs and regressions to be
identified and fixed. You should create a plan for
a release hierarchy for things like nightly, weekly,
milestone, release, long term, etc.

Testing
Unit and integration tests should be incorporated
directly into the software development process so
changes can be made with less fear of creating new
problems. Potential issues should be identified and
addressed early to avoid accumulating technical debt.

Continuous integration
Your software development process should implement
continuous integration so that every proposed change
is automatically tested with the results shown in the
changes themselves.

Documentation
All software projects should include a README
that describes what the software does, why it’s
important, how to run it, and how to develop it. Good
documentation is often the difference between a
successful project and a failed project.

Issue tracker
Issue trackers for all internal projects should be open to
everyone in the organization to submit a bug, request
a feature, or ask a question. This benefits the projects
themselves by increasing the amount of feedback they
receive. It also benefits other teams by expanding the
expertise that is available to them.

The Linux Foundation38Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Join the TODO Group

Update M&A Practices

Update Outsourced Development Agreements

The TODO group is a collection of tech companies who
collaborate on the policies, practices, and pragmatics
of running an open source program office. Their
collaboration is managed as a community project
under the Linux Foundation, and they are a resource
to companies who are just starting to get their open

source programs established. The TODO group
publishes guides for open source program offices,
and its members frequently present at open source
conferences on best practices. Visit todogroup.org to
learn more and reach out to info@todogroup.org to
find out how to join.

If your company is considering a merger or is the target
of an acquisition, it should structure its compliance
program to offer the necessary level of disclosure and
provide representations. Company policies regarding
merger and acquisition transactions need to be
updated to account for open source software.

Corporate development must mandate that source
code be evaluated from a compliance perspective
prior to any merger or acquisition to avoid surprises
that might derail discussions or affect the company’s

valuation. For the acquiring company, comprehensive
code evaluation assures accurate valuation of software
assets and mitigates the risk of unanticipated licensing
issues undermining future value. Additionally, the
acquiring company may include provisions in the
purchase agreement requiring the disclosure of open
source that is subject to the transaction. Diligence
practices should be updated to require open source
disclosure and include guidance regarding the review of
any disclosed open source and licenses.

Agreements relating to outsourced development
of software should also be updated to reflect open
source compliance procedures and to ensure that
other provisions of these agreements (such as
representations and warranties) are broad enough
to cover the risks posed by open source. Corporate

Development must mandate that all source code
received from outsourced development centers goes
through the compliance process to discover all open
source being used and to ensure proper actions are
being taken to fulfill license obligations.

https://todogroup.org/
mailto:info%40todogroup.org?subject=

The Linux Foundation39Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Challenges You Will Face

There are three general areas where open source
programs typically face significant challenges: culture,
processes, and tools (Figure 11). Within each of these
categories are several elements that you will need to
address to fit the open source model.

Culture
Cultural challenges often stem from the fact that there
is a gap between traditional software development
practices and the requirements of open source
development. You can bridge this gap by hiring open
source experts and having them train other groups
that aren’t familiar with the open source development
model. These experts can provide guidance to help
•	 Create internal processes that follow the open

source development practices of release early and
often, and peer review.

•	 Improve transparency between departments to
encourage more cross-functional collaboration.

•	 Form your engineering teams around the ideals of
meritocracy.

•	 Establish proper success metrics to encourage open
source and cross-department contributions.

Processes
Open source development is dynamic, moves very
quickly, and has special requirements for compliance.
Companies that do not adapt their internal processes
to meet this type of development can easily be left
behind. Developers need to be enabled to contribute
code upstream quickly and any internal code policies
need to be modified to allow this.

First, it is vital to have a team in charge of maintaining
proper open source compliance to avoid legal
problems. You’ll also need to have a simple internal
approval model for open source use and contributions.
You might have to move from highly complex and
cumbersome policies to a more simple approach
for receiving, reviewing, and approving source code
contributions. It is a function of balance between all
parties involved: legal, engineering, and open source.
The compromise should support a dedicated open
source team that has a blanket approval to contribute
to a number of open source projects. This does not
need to be the case for all teams, and you can use
different levels of approval depending on the nature of
the code being contributed (e.g. simple bug fixes, code
to improve existing functionality, code that offers new
functionality, or starting a new project).

Figure 11: The three major challenge areas for open source engineering

Culture

Development model
Collaboration
Transparency
Meritocracy

Team formation
Hiring practices

Right success metrics

Process

Governance
Usage

Compliance
Contribution

Approvals
Operational model

Tools

IT infrastructure
Development tools

Tracking metrics
Knowledge sharing

Code reuse

The Linux Foundation40Enterprise Open Source: A Practical Introduction

Lessons Learned from Two Decades of Enterprise Open Source Experience

Tools
The final major challenge area are is building tools that
are compatible with the open source development
model from the start; you need to create a setup
that fulfills the needs of the open source program
office and also meets corporate IT guidelines. The
biggest challenge here is created by the fact that open
source engineers deal primarily with collaboration
and communication tools that are available to the
public; communication and code they submit to these
platforms is not directly related to internal IP and
should be treated as such.

Open source engineers need greater flexibility to
communicate with external participants via email, chat,
and code development platforms, and their IT tools
need to facilitate this. For example, emails to an open
source project should never have anything attached to
them that claims the content as intellectual property of
the company it was sent from, and communication with
public mailing lists from company accounts should be
allowed without obstruction.

Additionally, a large portion of open source
development occurs on Linux, and your engineers
will need devices that support the development
distribution of their choice because the IT environment
you create should allow developers to join the team
without requiring any major changes to the way they
work. Ensure that all engineers who use Linux are able
to access all vital internal tools and resources either on
Linux, or via a separate compatible device.

Finally, since open source development happens all
over the world, your tools will also need to support
fully-distributed teams work in remote offices or their
own home. If your company is located primarily at a
single location, this will require you to enable tools that
allow remote workers to connect to internal business
resources through a VPN or similar technology. You
will also need to evaluate your IT policies for things like
helpdesk support to ensure you have secure methods
to resolve IT issues for remote employees. For example,
remote workers will not typically be able to visit an
IT helpdesk in person when they have issues with
internal resources, so you might need to establish an
alternative.	

Conclusion

The Linux Foundation42Enterprise Open Source: A Practical Introduction

Conclusion

•	 Consumption - Establish internal infrastructure
that enables proper open source practices and
incorporates open source policies, processes,
checklists, and training.

•	 Participation - Begin engaging with the open source
community on communication platforms and at
events. Sponsor projects and organizations that are
important to open source software you rely on for
your products.

•	 Contribution - Hire or train developers that focus
specifically on open source contributions and deploy

the necessary tools to support internal open source
engineering.

•	 Leadership - Increase engagement with open
source communities, open standards bodies, and
foundations. Launch new open source initiatives and
increase your visibility in open source communities.

Open source mastery is no secret; if you follow the steps
and principles offered in this book, you should find
yourself well on your way. Welcome to enterprise open
source.

It is no secret, open source is eating the software world; you can either watch the show or be a part
of it. Mastery of open source requires a strong strategy that encompasses open source consumption,
participation, contribution, and leadership, and each of these requires their own incremental effort and
investment into improving open source engineering:

References
OpenChain
https://www.openchainproject.org

SPDX
https://spdx.org/

Open Compliance Program
https://compliance.linuxfoundation.org/

TODO
http://todogroup.org/

Open Source Compliance in the Enterprise
https://www.linuxfoundation.org/publications/open-source-compliance-enterprise/

Linux Foundation Enterprise Guides
https://www.linuxfoundation.org/resources/open-source-guides/

Practical GPL Compliance
https://www.linuxfoundation.org/publications/practical-gpl-compliance-download-this-free-guide-today/

Open Source Audits in Merger and Acquisition Transactions
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/

https://www.openchainproject.org
https://spdx.org/
https://compliance.linuxfoundation.org/
http://todogroup.org/
https://www.linuxfoundation.org/publications/open-source-compliance-enterprise/
https://www.linuxfoundation.org/publications/open-source-compliance-enterprise/
https://www.linuxfoundation.org/publications/practical-gpl-compliance-download-this-free-guide-today/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/

Recruiting Open Source Developers
A guide published by The Linux Foundation.

OpenChain Curriculum
Available as a free download, it is a great resource to educate individuals involved with the software procurement
process about open source compliance.

Linux Foundation Free Compliance Training For Developers
The Linux Foundation Compliance Basics for Developers course is a great, free resource to educate developers on
how open source compliance relates to their work.

Software Package Data eXchange®

https://spdx.org/about

Innersource: A Guide to the What, Why, and How
A practical guide on innersource is and how it can be applied to your company by Jono Bacon

https://www.linuxfoundation.org/recruiting-open-source-developers/
https://www.openchainproject.org/curriculum
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://spdx.org/about
http://www.jonobacon.com/2017/06/25/innersource-guide/

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

	Introduction
	Why Open Source?
	Another Tool in Your Tool Box
	Software, Software, Software
	Adaptability to Various Business Models
	Product Dependency
	More Focused, Faster Path to Innovation
	Product Enablement
	Open Source R&D Is an Innovation Enabler

	Lessons Learned from Two Decades of Enterprise Open Source Experience
	Identify Reliance on Open Source Software
	Identify Open Source Skills Portfolio and Hire from the Community
	Develop Your Open Source Strategy
	Identify Current and Target Position on the Open Source Strategy Ladder
	Implement Open Source Infrastructure
	Join The Linux Foundation Compliance Initiatives
	Hire or Promote a Leader for the Open Source Team
	Formalize an Open Source Career Path
	Create or Outsource Open Source Training
	Create Meaningful Metrics to Track Progress
	Establish Relationships with Open Source Foundations
	Establish Plans to Release Proprietary Source Code Under an Open Source License
	Encourage Internal Collaborations
	Provide a Flexible IT Infrastructure
	Host Open Source Events
	Collaborate with Universities on Open Source R&D Projects
	Explore Inner Source Practices for Internal Projects
	Why Incorporate Open Source Principles?
	What Does this Mean in Practice?
	Important Open Source Workflow Practices for Enterprises
	Join the TODO Group
	Update M&A Practices
	Update Outsourced Development Agreements
	Challenges You Will Face

	Conclusion
	References

