
open source

O
pen source software is shifting the software industry into a new paradigm, moving

from developing proprietary code behind closed doors to developing code that can

be shared, modifi ed and redistributed openly. Key benefi ts associated with this shift

is reducing development cost and software components complexity, developing re-usable common-

off-the-shelf software assets, while increasing fl exibility and using common enablers. Organizations that

embrace the open source model and follow it when it infl uences positively their ways of building soft-

ware, will increase their chances to retain their competitive advantage. In this article, we review some

of the best practices to follow when taking a proprietary technology and making it open source.

1. Open Source for the Right Reasons
 To be successful in open sourcing a project,
you must have the right reasons or motivations.
In a previous article published in Enterprise
Open Source Magazine, we discussed the top
good reasons to open source proprietary soft-
ware, which included:
• Providing a reference implementation to a

standard

• Ensuring that critical software remains viable
• Ensuring that new features are implemented
• Taking control of your own destiny
• Undercutting the competition
• Commoditizing a Market
• Partnering with others and promote goodwill

for your company in the developer community
• Driving market demand by building an
 ecosystem

About the Authors

Dr. Frédéric Bénard is Engineering Manager at Motorola

and leads the Open Source Software Center of Excellence,

which is part of the Motorola “Embedded Systems, Open

Source and Linux Technology Group”. He holds a B.Sc.

in Physics from McGill University, a M.Sc. and a Ph.D. in

Physics from the University of Toronto, and an MBA from

McGill University.

frederic.benard@motorola.com

Dr. Ibrahim Haddad is Director of Embedded & Open

Source Technology at Motorola. Prior to Motorola, Dr. Had-

dad managed the Carrier Grade Linux and Mobile Linux

Initiatives at the Open Source Development Lab (now the

Linux Foundation). He received his Ph.D. in Computer Sci-

ence from Concordia University in Montreal, Canada.

ibrahim.haddad@motorola.com

August / September 2007 PAGE 12 EnterpriseOpenSource.SYS-CON.com

The Unofficial How-To

 of Open Sourcing

Best practices and

 lessons learned

by Frédéric Bénard
and Ibrahim Haddad

• Offering your customers the ability to support
themselves and add their custom features

 Open sourcing for the wrong reasons will
not support your goal and will have a negative
effect on your progress and relation with the
open source community.

2. Legal Review and Understanding Intellectual
 Property Implications
 The second step in the process is to audit
the code base which you plan to open source
thoroughly to verify that all of the code is
owned by you or, in the case of open source
packages that might be included in your
code, that you have the appropriate distribu-
tion rights. This audit may be partially auto-
mated with the use of scanning tools that are
commercially available today.
 Furthermore, you must also evaluate if
any of your intellectual property (IP) will be
released as part of open sourcing the code.
Note that, in the case of a large company,
one division may not be aware of the IP
from another division. In that situation, it is
important to have your open source project
reviewed by a group that is familiar with all
of your company’s IP.

3. Select an Open Source License
 The adoption of a simple, well known and
popular open source license will go a long
way to encourage community participation
in your project. Therefore, instead of creating
your own open source license, it is most pre-
ferred that you use an existing license already
approved by the Open Source Initiative (OSI).
A list of OSI approved licenses can be found
at http://www.opensource.org.
 It is highly recommended to involve your
company’s legal department in the license
selection process. In all cases, there are some
general guidelines that we present below:
• Contribution to an existing open source

project must follow the project’s license.
• Contribution to the Linux kernel must be

released under the GNU General Public
License (GPL) Version 2.

• Creation of a new open source project
requires choosing a license that matches
your business goals, and preferably use
an existing and OSI approved open source
license.

• If you want all future derivative work of
your contribution to be distributed in
source code format, then the GPL is a logi-
cal choice.

• If you care contributing to a library, then
you might consider the GNU Library or
“Lesser” General Public License (LGPL).

• If you want your contribution to be usable
within both open source and proprietary
(commercial) products, then you might
consider the BSD license or the Apache 2.0
license.

4. Train Your Employees
 Companies that use and participate in
open source projects are highly recommend-
ed to provide open source training to their
employees. There are specialized companies
that offer such educational services or can
help your company create and tailor specific
open source courses based on your needs.
Most common topics covered in basic open
source training include:
• General open source concepts
• Open source licenses
• Risks associated with open source software
• Your company’s open source policies and

compliance rules
• Open source development model
• Integrating open source software within

your software development model
• Working with the open source community

 Working with the open source commu-
nity is very different from the traditional
corporate development environment and
has a different process and set of values
from traditional proprietary development
model. Training will help bridge the gap and
will educate your employees on the working
methods of the open source community.

5. Build the Open Source Project Infrastructure
 As part of the open sourcing process, you
need to build the infrastructure for your
project which allows the project to be visible
to the outside world and offer communica-
tion and software development tools to the
project team and to the open source commu-
nity. A typical project infrastructure includes
a web site, a code repository system, one or
more project mailing lists, a bug tracking sys-
tem, a release or patch tracking system and a
feature request tracking system.
• Web site: The web site of any code contri-

bution must specifically:
 – describe the purpose of the contribution
 – explain the problem the contribution

 solves
 – explain how the contribution works
 – describe the benefits of the contribution

 to the common user
 – provide test cases and test scripts so

 that open source developers can
 experiment with the contribution and

 see its benefits
 – advertise news related to the project

• Code repository system: Two popular code
repository systems are Concurrent Versions
System (CVS) and Subversion (SVN). Select
one and populate it with your source code.
It is also useful to define a coding standard
and enforce it.

• Mailing lists: You need to host one or
more project mailing lists. For instance,
your open source project might require a
mailing list for developers involved in the
project (whether they are your company’s
developers or external developers from the
open source community), another mailing
list for the user community, and possibly a
third one for quality assurance or software
testing. The goal of having more than one
mailing list is to keep discussions focused.
Typically, the core team of the project
would be subscribed to all mailing lists,
while other contributors would be sub-
scribed to the list that is of most interest to
them.

• Bug tracking system: A bug tracking sys-
tem allows individuals or groups to report
bugs against your project; it allows you
and others to keep track of outstanding
defects.

• Release or patch tracking system: A release
tracking system allows individuals or
groups to keep track of your project soft-
ware releases or patches.

• Feature request tracking system: You
should define a process for users to sub-
mit feature or enhancement requests and
select an appropriate request tracking
system.

 SorceForge.net offers this entire infrastruc-
ture for open source projects, for free. Thou-
sands of open source projects are currently
hosted on that site. As an example, you can
visit http://sourceforge.net/projects/ppacc/,
the web site for a Motorola contribution
to the Linux kernel called Precise Process
Accounting, and examine all the features
provided by the web site.

6. Announce the Project
 Once you have created your project infra-
structure, you are now ready to announce
the project to the world and invite people
to provide feedback and contribute to the
project. The primary method used to an-
nounce your project is to send an email to
the relevant mailing lists. Projects can also
be announced at conferences, through press
releases, or through articles published in the
Linux Journal, the Enterprise Open Source
Magazine, or any other Linux focused
publication.

August / September 2007PAGE 13EnterpriseOpenSource.SYS-CON.com

October / November 2007 PAGE 14 EnterpriseOpenSource.SYS-CON.com

open source

 When making the announcement via mail-
ing list there are some general guidelines to
respect:
• Use subject line “[ANNOUNCE] X“ to an-

nounce the contribution where X is the
name of the contribution

• Give some background and introductory
text

• Include motivations for your contribution
• Explain how your contributions is different

from existing or similar code
• Explain how people will benefi t from it
• Don’t attach any documents in the email;

instead point to a web site.

7. Follow Open Source Development Model and
 Community Practices
 Now that you have announced your proj-
ect to the world and hopefully have attracted
the attention of open source developers, it is
your team’s responsibility to respect and fol-
low the open source development model and
open source best practices. Below we outline
the most important practices:
• Listen to the open source community:

The feedback received from open source
developers over the project mailing list can
sometimes be negative. Don’t worry about
it. It is important to review the feedback
and understand what the developers are
trying to say. It is best not to take such
negative feedback personally. After all,
the intention is to improve code quality
through intensive review. Take the good
suggestions you receive and incorporate
them into your code. If there are solid
technical reasons why the suggestions are
not valid then explain those reasons over
the mailing list.

• Embrace code reuse: Open source develop-
ers promote and encourage the develop-
ment of reusable software. In line with this
practice, if someone has already imple-
mented the capability or feature you need,
you can use it and build on top of it. In the
event that you are starting a new project
from scratch, keep software reuse in mind

and develop code in modules that can be
used by others and by you without many
modifi cations.

• Be open: It is important to be open in terms
of disclosing problems, bugs and challeng-
es. This openness is much appreciated and
is also expected by the open source com-
munity, who will help you with immediate
workarounds and fi xes.

• Release early and release often: Open
source projects tend to make software
releases available early to the user com-
munity and then issue frequent updates
as the software is modifi ed. This practice
is called “release early, release often”.
The open source community believes
that this practice leads to higher-quality
software because of peer review and test-
ing by a large base of users who will
report bugs and contribute fi xes. A side
benefi t of having many people looking
at the code is that the code is reviewed
for adherence to coding style; fragile or
infl exible code can also be improved
because of these reviews. Furthermore,
this practice allows the release of small
incremental changes that are easier to
understand and test.

• Follow community coding style: The open
source community follows a strict coding
style to make it easier to understand the
code, review it and revise it quickly.

8. Be Visible
 It is important to be active and visible
not only when you fi rst launch your project
but throughout your project’s lifecycle, as
this will allow you to rally an increasing
number of contributors. You can write
articles about your project in open source
magazines such as Linux Journal, Linux
Magazine, Linux Planet and Open Source
Enterprise Magazine; you can attend and
present at open source community events
and conferences such as the Ottawa Linux
Symposium and Melbourne’s linux.conf.au
conference.

As part of the open sourcing process, you need to
build the infrastructure for your project which allows
the project to be visible to the outside world
and offer communication and software
development tools to the project team and
to the open source community.

October/ November 2007PAGE 15EnterpriseOpenSource.SYS-CON.com

When Chris Negus speaks,
people learn Linux®!

Chris Negus is back with
the only book you’ll need
on Fedora 7 and Red Hat
Enterprise Linux—from the
basics up to advanced system
administration skills. Packed
with tutorials, techniques,
and the latest on platforms,
3D interfaces, and media,
this is the best Fedora book
on the market.
978-0-470-13075-9

Available wherever
books are sold.

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

9. Be a Good Open Source Citizen
 Being a good open source citizen starts by
being part of the open source community,
contributing to the community, following and
respecting its practices and processes, and
leading by example, i.e., getting things done by
doing them.

Conclusion
 This article reviewed some of the best
practices to follow when open sourcing a
proprietary technology. Many companies
have tried to go the “open source way”.
Some have bailed after failed trials; other
companies are not doing so well and others
succeeded and are being regarded as raw
models for working with the open source
community. It is your responsibility to
learn, understand and follow the working
methods and best practices of the open
source community.
 In a follow up article we will describe
how we went through the described process
to open source a contribution from Motorola
to the Linux kernel called the “Precise
Process Accounting”, which is available
today from: http://sourceforge.net/projects/
ppacc/.
 Stay tuned!

AD

Working with the open
source community is
very different from the
traditional corporate
development environment
and has a different
process and set of
values from traditional
proprietary
development
model.

