
Technical Debt
and Open Source
Development

A discussion towards a better understanding of technical
debt and how open source development helps mitigate it

By Ibrahim Haddad, Ph.D. & Cedric Bail, M.Sc.

A Publication of The Linux Foundation | July 2020

www.linuxfoundation.org

The Linux Foundation 2Technical Debt and Open Source Development

Abstract
This paper grew out of a phone conversation the
authors had on a Sunday morning mid-March 2020
while being confined in their homes. Both authors
worked together within the Open Source Group at
Samsung Research and directly experienced minimizing
internally carried technical debt via working with
upstream open source projects. That experience
covered dozens of open source projects used across
multiple products and business units with varying
degrees of involvement and experience with upstream
development. The paper provides an overview of the
problem of technical debt at large scale. It includes
discussions on identifying technical debt, how to
minimize it, the role of open source development, and
strategies to address the issue.

Disclaimer
The opinions expressed in this paper are solely the
authors’ and do not necessarily represent their current
or past employers’ views. The authors would like to
apologize in advance for any error or omission and are
open to feedback and updates.

The Linux Foundation 3Technical Debt and Open Source Development

Table of Contents
Technical Debt 4

Definition 4

Symptoms 4

Types of Technical Debt 4

Temporary Technical Debt 5

Unknown Technical Debt 5

Purposely Created Technical Debt 5

Obsolete Technical Debt 5

Organizational Technical Debt 5

The Many Causes of Technical Debt 5

Consequences 6

How does technical debt accumulate? 7

Working with Technical Debt 8

Identifying Technical Debt 8

Minimizing Technical Debt 8

Choice of programming language 8
Choice of ecosystem 9

Choice of dependencies 9

Example 1: The Role of Custom Build 10
Systems

Example 2: User Interface Framework 11

The Role of Upstream Development 12

Upstream - Unifier of Efforts 13

Addressing Technical Debt at Scale 14

At the Policy and Process Level 14

At the Development Level 14

Too late! Technical debt is already here. 15
What should we do?

Recommended Practices 16

Conclusion 17

Feedback 18

About the authors 18

The Linux Foundation 4Technical Debt and Open Source Development

Technical Debt
Definition
Technical debt, a term used in software development,
refers to the cost of maintaining source code that was
caused by a deviation from the main branch where joint
development happens. A wider interpretation of what
constitutes technical debt is proprietary code by itself:

•	 It has been developed by a single organization.

•	 It is source code that the organization alone needs
to carry and maintain.

•	 In some cases, the organization depends on a
partner’s ability to maintain the code and carry that
said debt.

A noteworthy clarification is that upstream code is
not without technical debt when the upstream project
doesn’t have resources/time to maintain itself via its
developers’ community. An example of this scenario is
the various companies that depended on the OpenSSL
project without contributing to the project and realizing
that the project was maintained only by a single person
during their spare time. This was the specific case
scenario that motivated the Linux Foundation to launch
its Core Infrastructure Initiative to support open source
projects critical to our modern infrastructure.

Symptoms
How would you identify the symptoms pointing to
the existence of technical debt? And, what are these
symptoms? In this section, based on our experiences,
we list several such symptoms with a brief description

of each one of them. This is not intended as an exhaustive
and comprehensive list but rather a list of the most
common and widely observed technical debt symptoms.

•	Slower release cadence Time increases between
the delivery of new features

•	 Increased onboarding time for new developers
Onboarding new developers becomes highly
involved due to code complexity where only
insider developers are familiar with the codebase.
The second manifestation of this symptom is the
difficulty in retaining developers or hiring new
developers.

•	 Increased security issues At least, experiencing
more security issues than the main upstream branch.

•	 Increased efforts to maintain the code base
Maintenance tasks become more time consuming
as the body of code to maintain becomes larger and
more complex.

•	Misalignment with the upstream development
cycle illustrated in the inability to maintain pace,
be aligned, with the upstream development and
release cycles.

Types of Technical Debt
There are several types of technical debt. We are
not aware of a standardized or commonly agreed-upon
definition to describe these various technical debt
types. Therefore, in this section, we present our
interpretation.

The Linux Foundation 5Technical Debt and Open Source Development

Temporary Technical Debt
A team may be working on a complex feature that possibly
touches several components, systems, or subsystems.
The need arises to carry out certain technical debt for
a temporary period as things get developed and integrated
with the upstream branch. We are aware of the fact that
we’re creating technical debt. However, our purpose is
to accelerate product development, and the end goal
is to repurpose and merge the fork with the upstream
branch at a later point.

Unknown Technical Debt
Unknowingly creating technical debt as a result of bad
engineering practices. An example of this scenario
is poorly-written code that is not accepted into the
upstream branch and is not even a candidate for
reusing somewhere else. We’re stuck with this code.

Purposely Created Technical Debt
This unusual type of technical debt is being created
on purpose. An example of such a case would be an
organization that wants to maintain certain features
exclusive to them without sharing them with the
broader community. As a result, such organizations find
themselves creating this fork to keep it independent
without merging it with the upstream branch. Over
time, such forks grow, leading to larger technical debt
and increased associated maintenance costs.

Obsolete Technical Debt
Obsolete technical debt is a unique use case of technical
debt resulting from the “not invented here” syndrome
or the result of isolated development of new components
that could have benefited the broader community.
However, due to a lack of technical oversight or
leadership, one organization only uses that development.
Simultaneously, the world moved on to solve the problem

and created a defacto solution (or a standard) that
is now incompatible with what the organization has
developed. This situation makes that development a
source of technical debt by obsolescence.

Organizational Technical Debt
It is widely discussed how the source code that an
enterprise creates often matches that enterprise’s
organization -- a very interesting theory. In some
cases, it so happens where code should be developed
and where it ends up being developed do not match.
When developers cannot push back on managers and
have the code written by the right people, or they can’t
contribute to the right piece of code, the result is often
a piece of duct tape on code that shouldn’t be there
and that nobody wants to deploy. This is technical debt.

The Many Causes of
Technical Debt
A large number of factors contribute to the creation
and growth of technical debt. In this section, we
explore the most common causes and provide a brief
description of each one.

•	Low-quality code that can’t be upstreamed for
some reason, such as it doesn’t meet the code
quality criteria set by the target open source
project. Another manifestation of this factor is what
is commonly referred to as “spaghetti code.”

•	Self-serving code that is only useful to the specific
company contributing the code without much use to
the general community. Such code (or functionality)
is usually not accepted upstream, and the recomm-
endation is often to adjust it in such a way to benefit
general use cases and the wider number of users.

The Linux Foundation 6Technical Debt and Open Source Development

•	Fragmented development leading to duplicated
efforts and competing implementations

•	Lack of effort to drive code upstream -- in many
cases, the team’s organization creating the code
does not have enough bandwidth to work with
the community and drive the code into being
accepted in the upstream branch. This may improve
effectiveness in the short term but creates technical
debt and long term negative consequences in code
maintenance and upkeep.

•	 Intrusive code that requires additional coordination
across multiple components or various systems/
subsystems.

•	Time to get code accepted upstream that causes
temporary technical debt until the code is accepted
and merged in the upstream branch. It has no
adverse effect on the long term.

•	Lack of testing preventing complete test coverage
and causing failure in submission.

•	Lack of documentation or documentation that is
not up-to-date.

•	Poor technical leadership and inadequate
engagement with the technical community lead to
being sidelined and having to, later on, play catch
up with the rest of the world as they move on.

•	Ongoing change in requirements within the internal
development efforts in any given organization.

•	Non-standard technology or lack of alignment with
a given standard.

•	Organizational obliviousness that combines
the aspects of poor technical leadership and
unawareness of the technical direction of upstream
development. This scenario is increasingly
common in non-digital-native companies who are
increasingly forced into development work.

Consequences
Creating and carrying technical debt will have several
negative effects on development efforts, including:

•	The higher cost of code maintenance.

•	Slower innovation and development cycles.

•	Paying interest on the debt -- payment of technical
debt is in the form of additional development
needed to keep up with the main branch, the
competition, and the rest of the world.

•	Possibly missing on new features in the main
branch or having to backport all new development
into the forked branch internally.

•	Duplicate work with the main branch arising due to
the delta between the internal and public branches
being too large.

The worst possible consequence is the effect on the
long term maintainability of the code base where
organizations often find themselves maintaining their
own fork.

The Linux Foundation 7Technical Debt and Open Source Development

How does technical debt accumulate?
Arthur Bloch is an American writer, author of Murphy’s Law books. He is quoted, “Friends come and go, but
enemies accumulate.” This is a great quote to reference when discussing technical debt as just like enemies,
technical debt accumulates. How does it happen? Figure 1 offers an illustration of a basic scenario that explains
how technical debt gets created and carried over.

Figure 1: Development cycles without upstream integration

Open Source
Project Tree

V 1.1
of upstream

Download

V 1.2
of upstream

Merge with
product tree

Product
Source

Code Tree

Apply
custom
patches

Fix custom code
that won’t work with

new version of
upstream code

New code updates
happening to product

tree while adapting
latest upstream code

Test

Re-do
Everything
for V 1.2 of
upstream

The Linux Foundation 8Technical Debt and Open Source Development

Working with Technical Debt
Identifying Technical Debt
Every line of code is potentially technical debt that
consumes engineering time best put on specific
business needs. Figuring this out is mostly about
figuring out your business goals and what your team
is putting time on. Answering a few questions can help
with this thought exercise:

•	What is your team working on?

•	What do you need to tell a new hire regarding your
software stack?

•	How often can you update your full software stack?

•	Do you know all the software you depend on?

•	What usually breaks?

•	What dependencies are the most painful to deal with?

•	What would have been the alternative for every
single component of the software stack used?

•	How active are the communities of each of these
alternatives?

•	How much work is needed to maintain that component
if the community disappears or gets stagnant?

•	How much effort to switch to this component?

•	How hard is it to debug problems reported by your
customers or engineers?

This series of questions will help you start discussing
technical debt and where your blind spots are.

Minimizing Technical Debt
The core question to address now is how to minimize
tech nical debt and minimize its impact on development
efforts.

Choice of programming language
The programming language or development framework
used to build the product poses certain restrictions
on your developers. The higher the complexity of a
language or a framework, the harder it is to maintain a
workforce that can work with it. It becomes a balance
between the constraint of the system you are building
your software for and the access to the necessary
developers base to get the job done. In general, for
most cases, you are better off with a higher-level1
language as it will:

•	Facilitate hiring developers that provide good results.

•	Help third parties identify and solve problems.

•	Be portable and easily maintained due to
community involvement.

•	Be more tolerant of mistakes and allow for a
simpler solution.

1 The choice of a high-level programming language is context
specific, however, as examples of such languages, we’d like to
suggest Go, Python, C#, and Typescript.

The Linux Foundation 9Technical Debt and Open Source Development

•	 Important online source of documentation, tutorial,
and pre-made solutions.

Choice of ecosystem
Your application is always built on top of a software
stack of language, framework, and operating system.
This is typical of the structure or composition of
the ecosystem the application is going to live in.
This ecosystem will shape the technical debt, and
developers should know how it aligns with their own
goals. For instance:

•	Linux distributions have different terms of support
and guarantee various levels of API/ABI/security
over time.

•	The choice of programming language impacts the
ability to run software over time. It affects the
ability to execute code as the runtime and build
environment it runs within evolve. Also, it might
pose some limitations on your ability in finding new
developers to manage those changes.

•	Modern language and framework also tend to
bypass Linux distributions to package software.
This factor might have a long term impact on your
software in the same way the Linux distribution will,
so it should also follow your API/ABI/security needs.

Choice of dependencies
As the world moves forward, more open source
software of high quality is made available. This is a
continuous process, and it is essential to evaluate each
piece of software that your organization is developing.
These dependencies simplify the necessary work
and enable them to build more complex features and
solutions. Still, they can also become technical debt if
their communities are not healthy enough. Choosing
the right dependencies and contributing to the
important ones to you reduces your technical debt by
sharing it with the world.

Also, what was true for the value of dependency a
few years ago might not be anymore. This means
that like dealing with technical debt, evaluating your
dependencies needs to be done continuously.

The Linux Foundation 10Technical Debt and Open Source Development

Example 1: The Role of Custom
Build Systems
Maintaining an operating system is more than a full-
time job. It requires making sure that

•	 It works reliably and securely over time,

•	Building each component is reproducible over time,

•	Each component is properly evaluated and tested,

•	Licenses are respected, and,

•	That you have a robust and secure update
mechanism.

This type of work is undervalued as putting together
a Linux environment can now be done in a matter of
hours; however, this is just the first step of maintaining
an operating system over a long period. Today, with
the ARM entrance in the server market, it is possible
to have a more easily standardized distribution for
embedded devices. Debian, Ubuntu, Redhat, and SuSE,
to name a few, provide ARM server distributions that
run just fine, or with a small tweak, on any embedded

device and remove the need for maintaining a custom
operating system and associated package build. It also
provides developers with standardized tools to transfer
knowledge from one environment, the cloud, to the
embedded market. Finding developers that can now
work on embedded systems becomes easier as hiring
managers can tap into the larger market -- the Linux
server market.

It is most likely that an important trend in embedded
device development is going to be in picking an ARM
server distribution with some kind of Long Term
Support, along with a small service written in a higher-
level language, much in the same way that the cloud
industry writes them. Python, Node.js, and Go all have
a bright future in the embedded systems industry.
The next time you have an embedded Linux project,
consider going with a standard Linux distribution that
provides some form of Long Term Support and reduces
your future technical debt.

The Linux Foundation 11Technical Debt and Open Source Development

Example 2: User Interface
Framework
It is easy to gather a few open source components and
run them on a Linux Kernel to name this assemblage
a Linux Distribution. It is not very difficult to display
a picture on the screen with some text and call it
a small UI framework. And in the same way that
maintaining a Linux distribution is a never-ending
task, writing and maintaining your UI framework will
also be a never-ending task. Consider the need to
display language from around the world correctly,
the need for accessibility, the need to scale up and
fit a more constrained environment, and support
different rendering systems as the world moves to
better technologies. There is no end to maintaining
any UI framework. You can easily observe these in the
development of existing UI frameworks. Qt, GTK, and
EFL are more than 20 years old today. They required
hundreds of developers to get where they are, and we
should expect them to require the same level of effort
for the next 20 years. React, and ReactNative require
hundreds of developers as well, a language change
isn’t changing the need to address all this external
constraint. When you pick a UI framework, understand

that you choose a community, and rely on them to carry
its technical debt. Being able to step in and help might
be necessary to ensure that this community stays
healthy and keeps moving that debt off your shoulder.

It is also recommended to pay attention to the licenses
in effect and generally who owns any given project’s
IP assets. Depending on a UI Framework and without
being involved in its development nor paying any
licensing fees, you are inherently weakening one of
your core dependencies if you are making a visual
application and so increasing your technical debt. It
is usually hard to switch frameworks, and the more
complex your application, the harder it becomes to
change frameworks. As for Linux distributions, you’d
want to be involved in some form with your upstream
dependencies to align with your own needs in the
long run. Contributing to upstream can take many
different forms, and you should choose the one that
matches your business the best (code, monetary,
documentation, marketing, etc.)

The Linux Foundation 12Technical Debt and Open Source Development

The Role of Upstream Development
It is expected to branch out or fork and do your development as long as the end goal is to contribute back to the
upstream branch. Figure 2 illustrates this process.

Open Source
Project Tree

V 1.1
of upstream

Download
from Upstream

project

V 1.3
of upstream

Product
Source

Code Tree

V 1.2
of upstream

Apply
custom
patches

Apply fewer
custom
patches

Apply fewer
custom patches

to latest
upstream code

Download from
upstream

project

Download from
upstream

project

Test Test

Contribute
changes

to upstream
project

Contribute
changes

to upstream
project

Integrate in
product tree

Integrate in
product tree

Figure 2: Development cycles with upstream integration

•	Continuous integration and continuous delivery/
deployment: Features are available more quickly to
developers; new code appears in developer trees
sooner. At a higher level of quality, each code commit
requires testing, regressions, and bugs are more visible.

•	Release early and often: The release early and
often practice has numerous proven advantages.
The “release early” allows others to provide
feedback and participate in the development,
welcoming new ideas that can be incorporated.

The Linux Foundation 13Technical Debt and Open Source Development

Simultaneously, code is still flexible and offers
time for problems to be flagged by others before
development gets too far. On the other hand, the
“release often” makes it possible for the codebase
changes to be easier to understand, debug, and
drive to maturity, and at the time, facilitates the
ability to maintain the rapid pace of development
and innovation.

•	Peer review: Share as early as possible, even
during the design phase of your code; Requests for
comments are expected; subsystem/maintainer
model with multi-layer hierarchy; by the time
code is released, it has typically been reviewed
many times. Code is always reviewed before being
committed. Enables projects to accept code from
a much wider range of contributors (establishes a
web of trust).

•	Ongoing or continuous testing:

•	Early discovery means faster triage and fixes.

•	Smaller changes make troubleshooting easier.

•	Regressions are noticed earlier.

•	Helps subsystem maintainers determine which
code submissions to accept.

•	Projects may have multiple build and test cycles.

•	Build service tools can automate the process.

•	Typically tightly aligned with feature freezes.

•	Easier Maintenance (changing technology, security
fixes)

•	Better testing, bug report gathering, and analysis

•	Focus on modular designs and architecture:
Modularity has several benefits: it allows projects
to scale, minimizes contention over common code
with a smaller core and features implemented
as plugins reduce collisions, creates a natural
separation of tasks and scope, allows features
to be available more quickly to developers, and
if well done modular designs often have fewer
interdependencies with clear interfaces.

Upstream - Unifier of Efforts
Done well, developing in alignment with upstream is
a guarantee that you will have little to zero technical
debt. However, that requires involvement and active
participation in upstream open source projects.
You can not enforce that upstream is going in the
direction that benefits you. Still, you can influence
it by contributing to it and sharing your goal/will
with upstream and influencing other contributors to
understand your needs.

The Linux Foundation 14Technical Debt and Open Source Development

Addressing Technical Debt at Scale
If your organization uses hundreds or thousands of
open source packages and makes modifications to
many of them, you will need to consider a contribution
strategy that will allow you to contribute code back to
the core or essential components to minimize technical
debt towards such strategic components. What are some
of the ways to address the technical debt on a large scale?
We explore two sets of practices that help that at policy
and process level and then at the development level.

At the Policy and Process Level
•	Blanket approval to contribute for dedicated open

source developers.

•	Faster approval path that allows contributions to
upstream projects to flow much faster.

•	Flexible IT support enables developers with
needed tooling (now facilitated with the Windows
Subsystem for Linux and virtual machines if you
can’t afford a dedicated Linux environment for your
developers).

•	Structure performance reviews that reward
developers who follow the set processes/policies
and work towards minimizing technical debt

•	Guaranteed time for your developers to work with
the upstream project

At the Development Level
•	Explain your business goals to your engineers by

sharing your vision and goals. In the end, they are
the ones implementing it, so they should know what
you have in mind.

•	Ensure that your developers and new members
joining your team understand what technical debts
are and why you choose to maintain the technical
debt you already have.

•	Have realistic expectations in terms of merging your
contributions with the upstream branch.

•	Embrace the review/feedback cycle. There will be
multiple back-and-forth cycles as part of the review
process with the upstream development.

•	Don’t be too selfish with your contributions. Get
involved with upstream on tasks that are not
necessarily directly needed in the short term by
your organization, but improve upstream viability
and health.

•	Encourage your developers to explicitly leave
comments in the code when they are adding
technical debt.

•	Work for the short term but plan for the long term.

The Linux Foundation 15Technical Debt and Open Source Development

Too late! Technical debt is already
here. What should we do?
The organization you work with has accumulated a
lot of technical debt, and all the symptoms are there.
Now, what should you do about it? We wish there was
a silver bullet, but there isn’t. The approach you take
will depend on several factors; however, you can start
examining these different options:

•	Choose what feature/functionality needs to be saved.

•	 Identify the code that is still useful.

•	Remove code that should not be maintained or
used anymore.

•	Reduce the need for branches/fork.

•	Refactor, clean and upstream the code that can be
upstreamed.

These activities are time-consuming and will slow down
your development cycle as you dedicated developers to
focus on this effort. It will also be hard for the organization
to add any features during that time and might be very
controversial or counter to the ongoing efforts.

It is also possible that there exists now an open source
project that does or could provide the feature or some
of the features you need. Migrating to it might also
make more sense than trying to deal with the current
codebase. It is something not to forget, the world
moves even when you are not looking, and there might
be something out there now that does what you need.
Do not let your organization pride prevent you from
looking at other solutions and use the one that makes
most business sense.

Another more radical approach: Give up on your
technical debt and drop the code altogether. This can
be done in multiple ways. If your business can not
afford to maintain the code still and that there aren’t
enough clients to justify its existence, just drop it. For
that, be explicit with your clients and tell them that
this code is going to be deprecated and sunsetted.
This is the equivalent of declaring bankruptcy on your
technical debt and ceasing payment on it.

The Linux Foundation 16Technical Debt and Open Source Development

Recommended Practices
In this section, we provide a list of recommended
practices listed in random order. Please keep in mind
that they may not all apply to your specific situation
and organization as you read this section. Some may
apply, some may not. Therefore, it is essential to do
a self-evaluation of an appropriate practice to adopt
within your company and possibly how such presented
practices can be adjusted to provide the best possible
outcome for you.

•	Adopt an upstream first philosophy.

•	Careful evaluation for any custom code that is not
going upstream.

•	Always plan to merge back with the main branch.
Forks and side branches are ok as long as there is a
plan to merge with upstream.

•	Align internal development effort with the
upstream branch release cadence

•	Allow fast approvals for upstream contributions.
This is done via a clear and lightweight policy and
process to facilitate interactions with upstream
developers.

•	Update your performance metrics to incorporate
metrics related to technical debt as part of
the overall performance goals to ensure that
development goals are not achieved due to a high
or unacceptable technical debt cost.

•	Train developers/managers to identify and mitigate
technical debt scenarios.

•	Require all code to be properly documented to be
better understood by upstream reviewers and
most likely will contribute to a faster acceptance
cycle (Document also why code is not upstreamed)

•	Follow the release early and often practice.
Don’t build a huge code base and then decide to
upstream it. Share design, early code and submit
large contributions in smaller, independent patches
that build on each other.

•	Track the code you choose to not upstream: Re-
evaluate at every opportunity. If you spot an
upward trend in the internal maintained code’s size,
this calls for a discussion and reevaluation of prior
decisions.

The Linux Foundation 17Technical Debt and Open Source Development

Conclusion
Open source has a significant role, and aligning your
development efforts with upstream open source
projects can result in a direct positive impact on the
amount of the technical debt an organization carries.
Just as financial debt involves paying interest, technical
debt has a different kind of interest that needs to be
carried: It’s not interest-free!

In many cases, technical debt is unavoidable short
term. Carrying technical debt is mostly a decision that
developers need to make all the time. The long term
goals of any engineering effort should be to minimize
and eliminate technical debt resulting from any
development effort. With proper policies, processes,
training, and tooling, organizations can help mitigate
and guide the engineering efforts towards lowering
technical debt.

The Linux Foundation 18Technical Debt and Open Source Development

Feedback
Suggestions for improvement will be appreciated. Please send comments to the authors directly.

About the authors
Cedric Bail (M.Sc.) is a senior software engineer currently contracting with EASi specializing in embedded Linux.
Cedric has worked as a software engineer for various embedded Linux platforms at a mobile operator, an Internet
service provider, and, most recently, one of the largest consumer electronics companies. His focus has always
been to optimize software for constrained environments, improving their API, and introducing new components as
needed in upstream software to match business requirements.

Twitter: @cedric_bail
LinkedIn: linkedin.com/in/cedricbail/
Email: cedric.bail@free.fr

Ibrahim Haddad (Ph.D.) is the Executive Director of the LF AI Foundation. Haddad has held technology and
portfolio management roles at Ericsson Research, the Open Source Development Labs, Motorola, Palm, Hewlett-
Packard, the Linux Foundation, and Samsung Research.

Twitter: @IbrahimAtLinux
Web: IbrahimAtLinux.com
LinkedIn: linkedin.com/in/ibrahimhaddad
Email: ibrahim@linuxfoundation.org

http://twitter.com/cedric_bail
http://linkedin.com/in/cedricbail/
mailto:cedric.bail%40free.fr?subject=
https://twitter.com/IbrahimAtLinux
http://IbrahimAtLinux.com
http://linkedin.com/in/ibrahimhaddad
mailto:ibrahim%40linuxfoundation.org?subject=

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

	Technical Debt
	Definition
	Symptoms
	Types of Technical Debt
	Temporary Technical Debt
A team may be working on a complex feature that possibly
touches several components, systems, or subsystems. The need arises to carry out certain technical debt for
a temporary period as things get developed and integrated
with
	Unknown Technical Debt
Unknowingly creating technical debt as a result of bad engineering practices. An example of this scenario is poorly-written code that is not accepted into the upstream branch and is not even a candidate for reusing somewhere else.
	Purposely Created Technical Debt
This unusual type of technical debt is being created on purpose. An example of such a case would be an organization that wants to maintain certain features exclusive to them without sharing them with the broader community
	Obsolete Technical Debt
Obsolete technical debt is a unique use case of technical
debt resulting from the “not invented here” syndrome or the result of isolated development of new components
that could have benefited the broader community. However, due
	Organizational Technical Debt
It is widely discussed how the source code that an enterprise creates often matches that enterprise’s organization -- a very interesting theory. In some cases, it so happens where code should be developed and where it ends u
	The Many Causes of Technical Debt
	Consequences

	How does technical debt accumulate?
	Working with Technical Debt
	Identifying Technical Debt
	Minimizing Technical Debt
	Choice of programming language
The programming language or development framework used to build the product poses certain restrictions on your developers. The higher the complexity of a language or a framework, the harder it is to maintain a workforce that

	Example 1: The Role of Custom
Build Systems
	Example 2: User Interface Framework
	The Role of Upstream Development
	Upstream - Unifier of Efforts

	Addressing Technical Debt at Scale
	At the Policy and Process Level
	At the Development Level

	Too late! Technical debt is already here. What should we do?
	Recommended Practices
	Conclusion
	Feedback
	
About the authors

