
OPEN SOURCE

IN THE ENTERPRISE
COMPLIANCE

Ibrahim Haddad, PhD

This page intentionally left blank.

Open Source Compliance
in the Enterprise

Ibrahim Haddad, Ph.D.

The Linux Foundation

2016

Open Source Compliance in the Enterprise

4

Copyright © 2016 The Linux Foundation
All rights reserved

5

Contents

Chapter 1 INTRODUCTION TO OPEN SOURCE COMPLIANCE 16

A CHANGING BUSINESS ENVIRONMENT 16

ENTER OPEN SOURCE COMPLIANCE 19

Benefits of Ensuring Open Source Compliance 20

FAILURE TO COMPLY 21

Intellectual Property Failures 22

License Compliance Problems 24

Process Failures 26

LESSONS LEARNED 28

Ensure Compliance Prior to Product Shipment/Service Launch 28

Non-Compliance is Expensive 29

Relationships Matter 30

Training is Important 30

Chapter 2
ESTABLISHING AN OPEN SOURCE MANAGEMENT PROGRAM 31

OPEN SOURCE COMPLIANCE PROGRAM 31

Compliance Strategy 32

Inquiry Response Strategy 32

Policies and Processes 32

Compliance Teams 33

Tools 34

Web Presence 35

Education 36

Automation 37

6

Messaging 37

COMPLIANCE CHALLENGES AND SOLUTIONS 37

Long-Term Goals versus Short-Term Execution 39

Communicating Compliance 40

Establishing a Clean Software Baseline 41

Maintaining Compliance 42

Institutionalization and Sustainability 43

Chapter 3
ACHIEVING COMPLIANCE: ROLES AND RESPONSIBILITIES 46

OPEN SOURCE REVIEW BOARD (OSRB) 50

LEGAL 53

ENGINEERING AND PRODUCT TEAMS 55

COMPLIANCE OFFICER 57

OPEN SOURCE EXECUTIVE COMMITTEE 58

DOCUMENTATION 58

LOCALIZATION 59

SUPPLY CHAIN 59

IT 60

CORPORATE DEVELOPMENT 60

Chapter 4 OPEN SOURCE COMPLIANCE PROCESS 62

EFFECTIVE COMPLIANCE 63

ELEMENTS OF AN END-TO-END COMPLIANCE PROCESS 64

Step 1 – Identification of Open Source 65

Step 2 – Auditing Source Code 67

Step 3 – Resolving Issues 70

7

Step 4 – Reviews 70

Step 5 – Approvals 72

Step 6 – Registration 73

Step 7 – Notices 74

Step 8 – Pre-Distribution Verifications 75

Step 9 – Distribution 76

Step 10 – Final Verifications 76

Chapter 5 COMPLIANCE PROCESSES AND POLICIES 78

POLICY 78

PROCESS 79

Source Code Scan 79

Identification and Resolution 81

Legal Review 81

Architecture Review 82

Final Review 83

PROCESS STAGES’ INPUTS AND OUTPUTS 83

Source Code Scan Phase 84

Identification and Resolution Phase 85

Legal Review Phase 85

Architecture Review Phase 87

Final Approval Phase 87

DETAILED USAGE PROCESS 88

INCREMENTAL COMPLIANCE PROCESS 93

OSRB USAGE FORM 95

Rules Governing the OSRB Usage Form 99

8

AUDITING 99

SOURCE CODE DISTRIBUTION 100

Distribution Incentives 100

Distribution Policy and Process 101

Distribution Methods and Modes 103

Distribution Checklists 104

Pre-Distribution Checklist 105

Post-Publication Checklist 107

Written Offer 107

Chapter 6
RECOMMENDED PRACTICES FOR COMPLIANCE PROCESS
MANAGEMENT 109

COMPLIANCE PROCESS 109

Identification Phase 109

Source Code Auditing 111

Resolving Issues 112

Reviews 113

Approvals 114

Notices 115

Verifications 115

TOOLS AND AUTOMATION 116

Source Code Identification Tools 117

Project Management Tools 118

Software Bill of Material (BOM) Difference Tools 118

Linkage Analysis Tool 119

9

CHAPTER 7 MANAGING COMPLIANCE INQUIRIES 121

RESPONDING TO COMPLIANCE INQUIRIES 122

Acknowledge 122

Inform 123

Investigate 123

Report 123

Close Inquiry 124

Rectify 124

Improve 124

General Considerations 124

CHAPTER 8 OTHER COMPLIANCE-RELATED PRACTICES 125

EMPLOYEE APPRAISAL 125

WEB PORTALS 126

MESSAGING 126

TRAINING 127

Informal Training 127

Formal Training 128

SOURCE CODE MODIFICATION CONSIDERATIONS 128

NOTICES CONSIDERATIONS 128

DISTRIBUTION CONSIDERATIONS 129

USAGE CONSIDERATIONS 130

ATTRIBUTION CONSIDERATIONS 132

Attribution Types 132

Presentation of Attributions 133

10

SPECIFIC LICENSE OBLIGATIONS 133

GENERAL GUIDELINES 135

Chapter 9 SCALING OPEN SOURCE LEGAL SUPPORT 137

PRACTICAL LEGAL ADVICE 137

LICENSE PLAYBOOKS 138

LICENSE COMPATIBILITY MATRIX 139

LICENSE CLASSIFICATION 141

SOFTWARE INTERACTION METHODS 143

CHECKLISTS 145

CONCLUSION 146

Open Source Compliance in the Enterprise

11

PREFACE

My involvement with open source compliance started early in my career as a
software developer, and has been a part of my job directly or indirectly for two
decades now. Throughout my journey working with open source software,
it was difficult to find practical references on open source compliance. My
interest grew in making my own experiences available so that others could
possibly learn from them, and then publish their experiences, so that as
an industry we can all strive towards better ways to achieve open source
compliance while minimizing impact on engineering resources and product
delivery timelines.

This handbook summarizes my experience driving open source compliance
activities in the enterprise, and focuses on practical aspects of creating
and maintaining an open source compliance program. Since most of my
experience was focused in the embedded space (with C and C++ being the
dominant programming languages), this emphasis comes across throughout
this handbook.

I hope you find it useful in your day-to-day drive to achieve open
source compliance.

Open Source Compliance in the Enterprise

12

Foreword

Open source has expanded not only from an idealistic movement led by
individuals around software and intellectual property but from one where
organizations (e.g., governments, companies, and universities) realize that
open source is a key part of their IT strategy and want to participate in its
development. Early success in Linux and other open source technologies has
spread to all areas of technology.

More traditional organizations are also taking notice; they are making open
source software a priority and using the software for strategic advantage in
their operations.

Use of open source in enterprise IT has doubled since 2010.

78% of surveyed companies run their businesses on open source.

64% currently participate in open source projects.

39% plan to launch their own open source projects.

North Bridge & Black Duck
“The 2015 Future of Open Source Survey”

“Open Source First: Simply put, any solution developed using taxpayer dollars
should be in the taxpayer’s domain (open source). At GSA, we believe that all
code we developed should be shared under an open license so others may
benefit from it. In addition, we will give priority to using open source software

as we design now solutions.”
Office of the CIO, U.S. General Services Administration

(U.S. agency that oversees $66 billion of procurement annually)

Open Source Compliance in the Enterprise

13

“The development of Blockchain technology has the potential
to redefine the operations and economics of the financial
services industry. It emerges at an important time, as the

industry strives to be leaner, more efficient, and more digital.
Open source development will accelerate the innovation and
help drive the scalability of this technology, and we are proud

to support the Hyperledger Project.”
Richard Lumb, Chief Executive, Financial Services, Accenture

“From increasing member investments to a growing, vibrant developer
community, the Dronecode Project’s first year has been extremely exciting. By

bringing efforts together to establish a common platform and utilizing open
source best practices, we’re able to build the foundation for a new era of

drone applications that extend from the camera to the cloud. The Dronecode
‘full-stack’ platform approach, combined with the hardware and software

innovations of its members, will bring about a new generation of drones that
are autonomous, aware of their environments, and continuously connected —

an airborne Internet of Things.”
Chris Anderson, CEO, 3DR

(Former Editor in Chief of Wired magazine and author of “The Long Tail”)

“Open source is essential to our development process. It’s a powerful
approach that lets people work together to build great solutions while realizing

shared benefits.”
Rob Alexander, CIO, Capital One

Organizations are looking for guidance on how best to participate
appropriately in open source communities and to do so in a legal and
responsible way. Participants want to share their code and IP, and they need
a trusted neutral home for IP assets (trademark, copyright, patents). They also
need a framework to pool resources (financial, technical, etc.).

Open Source Compliance in the Enterprise

14

Participants need expertise to train them how to collaborate with their
competitors in an effective manner. To that end, this book is geared to
creating a shared understanding on the best ways to create shared value and
innovation while adhering to the spirit and legal particulars of open
source licensing.

This page intentionally left blank.

Open Source Compliance in the Enterprise

16

Chapter 1
INTRODUCTION TO OPEN SOURCE
COMPLIANCE

A CHANGING BUSINESS ENVIRONMENT
Traditionally, platforms and software stacks were implemented using
proprietary software, and consisted of various software building blocks that
originated as a result of internal development or via third-party software
providers with negotiated licensing terms. The business environment was
predictable and companies mitigated potential risks through license and
contract negotiations with the software vendors. It was very easy to know
who was the provider for every software component. Figure 1 illustrates the
major building blocks of a traditional hardware and software platform.

Figure 1. A simplified architecture of a traditional software platform that relies on

proprietary software building blocks

Open Source Compliance in the Enterprise

17

Over time, companies started to incorporate open source software into their
platforms and software stacks due to the advantages it offers. The reasons
varied from product to product, but the common theme across industries
was that open source components provided compelling features out of the
box, there were meaningful economies to be gained through distributed
development that resulted in a faster time-to-market, and they offered a
newfound ability to customize the source code. As a result, a new multi-
source development model began to emerge.

Under the new model, a product could now have any combination of:

• Proprietary code, developed by the company building the
product/service

• Proprietary code, originally developed by the company under an
open source license in the process of integrating and deploying
open source components, but was not contributed back to the
upstream open source project

• Third-party commercial code, developed by third-party software
providers and received by the company building the product/service
under a commercial license

• Open source code, developed by the open source community and
received by the company building the product/service under an
open source license.

Figure 2 (next page) illustrates the multi-source development model and the
various combinations of sources for incoming source code.

Under this development model, software components can consist of source
code originating from any number of different sources and be licensed
under different licenses; for instance, software component A can include
proprietary source code in addition to third-party proprietary source code,
while software component B can include proprietary source code in addition
to source code from an open source project.

Open Source Compliance in the Enterprise

18

Figure 2. Multi-Source development model

As the number of open source software components grew in what were
once straightforward proprietary software stacks, the business environment
diverged from familiar territory and corporate comfort zones.

Figure 3 (next page) illustrates the adoption of open source software
throughout the various levels of a given platform or software stack.

One of the major differences between the proprietary and the multi-source
development models has been that the licenses of open source software
are not negotiated. There are no contracts to sign with the software
providers (i.e., open source developers or projects). Rather, the individuals
who initiate the project chose a given open source license, and once a
project reaches a certain scale, the licenses are virtually impossible to
change. When using the multi-source development model, companies must
understand the implications of tens of different licenses (and combinations
of licenses) coming from hundreds or even thousands of licensors or
contributors (copyright holders). As a result, the risks that companies
previously managed through company-to-company license and agreement

Open Source Compliance in the Enterprise

19

negotiations are now managed through robust compliance programs and
careful engineering practices.

Figure 3. A simplified view of the architecture of a modern software platform, showing the

proliferation of open source inside each of the software building blocks.

ENTER OPEN SOURCE COMPLIANCE
Open source initiatives and projects provide companies and other
organizations with a vehicle to accelerate innovation through collaboration
with the hundreds and sometimes thousands of communities that represent
the developers of the open source software. However, there are important
responsibilities accompanying the benefits of teaming with the open source
community: Companies must ensure compliance to the obligations that
accompany open source licenses.

Open source compliance is the process by which users, integrators, and
developers of open source observe copyright notices and satisfy license
obligations for their open source software components. A well-designed
open source compliance process should simultaneously ensure compliance
with the terms of open source licenses and also help companies protect

Open Source Compliance in the Enterprise

20

their own intellectual property and that of third-party suppliers from
unintended disclosure and/or other consequences.

Open source compliance helps achieve four main objectives:

• Comply with open source licensing obligations.

• Facilitate effective use of open source in commercial products.

• Comply with third-party software supplier contractual obligations.

Benefits of Ensuring Open Source Compliance

There are several benefits to achieving open source compliance. Companies
that maintain a steady-state compliance program often gain a technical
advantage, since compliant software portfolios are easier to service,
test, upgrade, and maintain. In addition, compliance activities can also
help identify crucial pieces of open source that are in use across multiple
products and parts of an organization, and/or are highly strategic and
beneficial to that organization. Conversely, compliance can demonstrate the
costs and risks associated with using open source components, as they will
go through multiple rounds of review.

A healthy compliance program can deliver major benefits when working with
external communities as well. In the event of a compliance challenge, such
a program can demonstrate an ongoing pattern of acting in good faith.

Finally, there are less-common ways in which companies benefit from
strong open source compliance practices. For example, a well-founded
compliance program can help a company be prepared for possible
acquisition, sale, or new product or service release, where open source
compliance assurance is a mandatory practice before the completion of
such transactions. Furthermore, there is the added advantage of verifiable
compliance in dealing with OEMs and downstream vendors.

Open Source Compliance in the Enterprise

21

FAILURE TO COMPLY
Throughout the software development, errors and limitations in processes
can lead to open source compliance failures. Examples of such
failures include:

• Failure to provide a proper attribution notice. An attribution
notice is usually provided as a text file together with the open source
component that provides acknowledgement as supplied by the
contributors of open source components.

• Neglecting to provide a license notice. A license notice is a file
that includes the open source license text included in the product or
stack and is typically provided with product documentation and/or
within the product or application user interface.

• Omission of a copyright notice. A copyright notice is an identifier
placed on copies of the work to inform the world of
copyright ownership.

• Failure to provide a modification notice. A modification notice
calls out modifications to the source code in a change log file,
such as those required by the GPL and LGPL. An example of a
modification notice is shown below:

/*
* Date Author Comment
* 10/15/2015 Ibrahim Haddad Fixed memory leak in nextlst()
*/

• Making inappropriate or misleading statements in the product
documentation or product advertisement material.

• Failure to provide the source code. Making source code
available (including the modifications) is one of the requirements of
the GPL/LGPL family of licenses.

Open Source Compliance in the Enterprise

22

• Failure to provide a written offer for example when using
GPL/LGPL license source code. A written notice provides the
end users of the product with information on open source software
included in the product and how to download source code that is
eligible to distribution. It is usually provided as part of the product
documentation and also accessible from the product’s user
interface. A basic example of a written offer would look as such:

To obtain a copy of the source code being
made publicly available by FooBar, Inc. related
to software used in this FooBar product, you
can visit http://opensource.foobar.com or send
your request in writing by email to
opensource@foobar.com or by regular postal
mail to:

FooBar Inc.
Open Source Program Office
Street Address
City, State, Postal Code
Country

• Failure to provide the build scripts needed to compile the source
code (per GPL and LGPL family of licenses).

Intellectual Property Failures

Table 1 (next page) provides examples of common accidental admixture
of proprietary and open source IP that can arise during the software
development process leading to license compliance issues. These
problems most commonly involve mixing source code that is licensed under
incompatible or conflicting licenses (e.g., proprietary, third-party, and/or
open source). Such admixtures may result in companies being forced to
release proprietary source code under an open source license, thus losing
control of their (presumably) high-value intellectual property and diminishing
their capability to differentiate in the marketplace.

Open Source Compliance in the Enterprise

23

The intellectual property failures can lead to one or more of the
following results:

• An injunction preventing a company from shipping the product until
the compliance issue has been resolved

• A requirement to distribute proprietary source code that
corresponds to the binaries in question under an open source
license (depending on the specific case)

• A significant re-engineering effort to eliminate the compliance issues

• Embarrassment with customers, distributors, third party proprietary
software suppliers and an open source community

Table 1. Examples of intellectual property failures

Problem Type How Discovered How to Avoid

Inserting open source code
into proprietary or 3rd party
code

Occurs during development
process when developers
copy/paste open source
code (aka “snippets”) into
proprietary or 3rd party
source code

By scanning the source
code for possible
matches with open
source code

Offer training to increase
awareness of compliance
issues, open source (OS)
licenses, implications
of including OS code in
proprietary or 3rd party code

Conduct regular code scans
of all project source code for
unexpected licenses or
code snippets.

Require approval to use OS
software before committing it
into product repository

Open Source Compliance in the Enterprise

24

Problem Type How Discovered How to Avoid

Linking of open source into
proprietary source code (or
vice versa – specific to C/
C++ source code)

Occurs as a result of linking
software components that
have conflicting or
incompatible licenses

With a dependency-
tracking tool that allows
discovery of linkages
between different
software components;
ID if type of linkage is
allowed per com-pany’s
OS policies

Offer training on linkage
scenarios based on company
compliance policy

Regularly run
dependency tracking tool to
verify all linkage relationships;
flag any issues not in line with
compliance policies

Inclusion of proprietary
code into an open
source component

Occurs when developers
copy/paste proprietary
source code into OS
software

By scanning source
code. Tool will ID
source code that
doesn’t match what’s
provided by OS
component, triggering
various flags for Audit

Train the staff

Conduct regular source
code inspections

Require approval to include
proprietary source code in OS
components

License Compliance Problems

License compliance problems are typically less damaging than intellectual
property problems, as they don’t have the side effect of forcing you to
release your proprietary source code under an open source license.

License compliance failures may result in any (or a combination) of
the following:

• An injunction preventing a company from shipping a product until
source code is released.

Open Source Compliance in the Enterprise

25

• Support or customer service headaches as a result of version
mismatches (as a result of people calling or emailing the support
hotline and inquiring about source code releases).

• Embarrassment and/or bad publicity with customers and open
source community.

Table 2 provides examples of the most common license compliance
problems that occur during the software development process, and offers
tips on how to avoid them.

Table 2. Examples of license compliance problems and how to avoid them

Problem Type How to Avoid

Failure to publish or make
available source code packages
as part of meeting
license obligations

Follow a detailed compliance checklist to ensure
that all compliance action items have been
completed when a given product, application, or
software stack is released into the market

Failure to provide correct version
of the source code corresponding
to the shipped binaries

Add a verification step into the compliance process
to ensure that you’re publishing the version of
source code that exactly corresponds to the
distributed binary version

Failure to release modifications
that were introduced to the
open source software being
incorporated into the
shipping product

Use a bill of material (BOM) difference tool that
allows the identification of software components
that change
across releases

Re-introduce the newer version of the software
component in the compliance process

Add the “compute diffs” of any modified source
code (eligible for open source distribution) to the
checklist item before releasing open source used in
the product

Open Source Compliance in the Enterprise

26

Problem Type How to Avoid

Failure to mark open source code
that has been changed or to
include a description of
the changes

Add source code marking as checklist item before
releasing source code to ensure you flag all the
source code introduced to the original copy you
downloaded

Conduct source code inspections before releasing
the source code

Add milestone in compliance process to verify
modified source code has been marked as such

Offer training to staff to ensure they update the
change logs of source code files as part of the
development process

Process Failures

Process failures can lead to infringement of the open source licensing terms
such as the inability to meet the license obligations. Table 3 (next page) lists
the most common compliance process failures that occur during the stages
of the software development process, and discusses how to avoid them.

Open Source Compliance in the Enterprise

27

Table 3. Sample process compliance failures

Failure How to Avoid

Failure of developers to request
approval from the internal open
source committee (sometimes
called Open Source Review
Board) to use open source
software, or failure to submit a
request in time

Offer training on your compliance policies and
processes

Conduct periodic full scans of software platform
to detect any OS not corresponding to a given
approval form. If OS component is found in the
build system without a corresponding compliance
ticket, a new ticket is auto-generated. (This assumes
companies rely on specific workflow implemented in
tools such as Bugzilla to track compliance of
SW components.)

Include compliance in performance reviews; e.g.,
failure to abide by the compliance policies directly
affects employees’ bonuses

Mandate that developers file approval requests early,
even if they didn’t yet decide on adoption of
OS code

Failure to take the open
source training

Ensure completion of OS training is part of
employees’ professional development plan and is
monitored for completion as part of the performance
review process

Failure to audit the source code Provide proper training to compliance staff

Conduct periodic source
code scans

Ensure that auditing is a milestone in the iterative
development process

Provide proper level of staffing so as not to fall
behind in the audit schedule

Failure to resolve the
audit findings

Don’t allow compliance tickets to be resolved if audit
report isn’t finalized. Compliance ticket is closed
only if no open subtasks are attached to it

Open Source Compliance in the Enterprise

28

LESSONS LEARNED
In the past few years, we have witnessed several cases of non-compliance
that made their way to the public eye. Increasingly, the legal disposition
towards non-compliance has lessons to teach open source professionals —
lessons that we will explore in following subsections.

Ensure Compliance Prior to Product
Shipment/Service Launch

The most important outcome of non-compliance cases has been that the
companies involved ultimately had to comply with the terms of the license(s)
in question, and the costs of addressing the problem after the fact has
categorically exceeded those of basic compliance. Therefore, it is really a
smart idea to ensure compliance before a product ships or a
service launches.

It is important to acknowledge that compliance is not just a legal-
department exercise. All facets of the company must be involved in ensuring
proper compliance and contributing to correct open source consumption
and, when necessary, redistribution. This involvement includes establishing
and maintaining consistent compliance policies and procedures as well as
ensuring that the licenses of all the software components in use (proprietary,
third-party, and open source) can co-exist before shipment or deployment.
To that effect, companies need to implement an end-to-end open source
management infrastructure that will allow them to:

• Identify all open source used in products, presented in services,
and/or used internally

• Perform architectural reviews to verify if and how open source
license obligations are extending to proprietary and third-party
software components

• Collect the applicable open source licenses for review by the
legal department

Open Source Compliance in the Enterprise

29

• Develop open source use and distribution policies and procedures

• Mitigate risks through architecture design and engineering practices

Non-Compliance is Expensive

Most of the public cases related to non-compliance have involved GPL
source code. Those disputes reached a settlement agreement that included
one or more of these terms:

• Take necessary action to become compliant.

• Appoint a Compliance Officer to monitor and ensure compliance.

• Notify previous recipients of the product that the product contains
open source software and inform them of their rights with respect to
that software.

• Publish licensing notice on company website.

• Provide additional notices in product publications.

• Make available the source code including any modifications applied
to it (specific to the GPL/LGPL family of licenses).

• Cease binary distribution of the open source software in question
until it has released complete corresponding source code or make it
available to the specific clients affected by the non-compliance.

• In some cases, pay an undisclosed amount of financial
consideration to the plaintiffs.

Open Source Compliance in the Enterprise

30

Furthermore, the companies whose compliance has been successfully
challenged have incurred costs that included:

• Discovery and diligence costs in response to the compliance inquiry,
where the company had to investigate the alleged inquiry and
perform due diligence on the source code in question

• Outside and in-house legal costs

• Damage to brand, reputation, and credibility

In almost all cases, the failure to comply with open source license
obligations has also resulted in public embarrassment, negative press, and
damaged relations with the open source community.

Relationships Matter

For companies using open source software in their commercial products,
it is recommended to develop and maintain a good relationship with the
members of the open source communities that create and sustain the open
source code they consume. The communities of open source projects
expect companies to honor the licenses of the open source software they
include in their products. Taking steps in this direction, combined with an
open and honest relationship, is very valuable.

Training is Important

Training is an essential building block in a compliance program, to ensure
that employees have a good understanding of the policies governing the
use of open source software. All personnel involved with software need
to understand the company’s policies and procedures. Companies often
provide such education through formal and informal training sessions.

Open Source Compliance in the Enterprise

31

Chapter 2
ESTABLISHING AN OPEN SOURCE
MANAGEMENT PROGRAM

An open source management program provides a structure around all
aspects of open source software, including selection, approval, use,
distribution, audit, inventory, training, community engagement, and public
communication. This chapter provides a high-level overview of the various
elements in an open source management program, surveys the challenges
in establishing a new compliance program, and provides advice on how to
overcome those challenges.

OPEN SOURCE COMPLIANCE PROGRAM
We’ll begin this chapter with an overview of the core elements needed in a
successful open source compliance program. This section, including Figure
4, will provide an overview of these essential elements.

Figure 4. Essential elements of an open source management program

Open Source Compliance in the Enterprise

32

Compliance Strategy

The open source compliance strategy drives the business-based consensus
on the main aspects of the policy and process implementation. If you do
not start with that high-level consensus, driving agreement on the details
of the policy and on investments in the process tends to be very hard, if
not impossible. The strategy establishes what must be done to ensure
compliance and offers a governing set of principles for how personnel
interact with open source software. It includes a formal process for the
approval, acquisition, and use of open source, and a method for releasing
software that contains open source or that’s licensed under an open
source license.

Inquiry Response Strategy

The inquiry response strategy establishes what must be done when the
company’s compliance efforts are challenged. Several companies received
negative publicity — and some were formally challenged — because they
ignored requests to provide additional compliance information, did not know
how to handle compliance inquires, lacked or had a poor open source
compliance program, or simply refused to cooperate with the inquirer. None
of these approaches is fruitful or beneficial to any of the parties involved.
Therefore, companies should have a process in place to deal with incoming
inquiries, acknowledge their receipt, inform the inquirer that they will be
looking into it, and provide a realistic date for follow-up. In a later chapter,
we discuss a simple process for managing open source
compliance inquiries.

Policies and Processes

The open source compliance policy is a set of rules that govern the
management of open source software (both use of and contribution to).
Processes are detailed specifications as to how a company will implement
these rules on a daily basis. Compliance policies and processes govern
the various aspects of using, contributing, auditing, and distribution of
open source software. Figure 5 (next page) illustrates a sample compliance
process, with the various steps each software component will go through as

Open Source Compliance in the Enterprise

33

part of the due diligence. This process will be discussed in detail in a
later chapter.

Figure 5. Sample compliance due-diligence process

Compliance Teams

The open source compliance team is a cross-disciplinary group consisting
of various individuals tasked with the mission of ensuring open source
compliance. The core team, often called the Open Source Review Board
(OSRB), consists of representatives from engineering and product teams,
one or more legal counsel, and the Compliance Officer. The extended team
consists of various individuals across multiple departments that contribute
on an ongoing basis to the compliance efforts: Documentation, Supply
Chain, Corporate Development, IT, Localization and the Open Source
Executive Committee (OSEC). However, unlike the core team, members
of the extended team are only working on compliance on a part-time
basis, based on tasks they receive from the OSRB. Chapter 3 provides a
detailed discussion on the roles and responsibilities of individuals involved in
achieving open source compliance.

Figure 6 (next page) illustrates the pair of teams involved in achieving
compliance: the core team and the extended team.

Open Source Compliance in the Enterprise

34

Figure 6. Individuals and teams involved in ensuring open source compliance

Tools

Open source compliance teams use several tools to automate and facilitate
the auditing of source code and the discovery of open source code and its
licenses. Such tools include:

• A compliance project management tool to manage the compliance
project and track tasks and resources.

• A software inventory tool to keep track of every single software
component, version, and product that uses it, and other
related information.

Open Source Compliance in the Enterprise

35

• A source code and license identification tool to help identify the
origin and license of the source code included in the build system.

• A linkage analysis tool to identify the interactions of any given C/C++
software component with other software components used in the
product. This tool will allow you to discover linkages between source
code packages that do not conform to company policy. The goal is
to determine if any open source obligations extend to proprietary or
third party software components. If a linkage issue is found, a bug
ticket is assigned to Engineering with a description of the issue in
addition to a proposal on how to solve the issue.

• A source code peer review tool to review the changes introduced to
the original source code before disclosure as part of meeting
license obligations.

• A bill of material (BOM) difference tool to identify the changes
introduced to the BOM of any given product given two different
builds. This tool is very helpful in guiding incremental
compliance efforts.

Web Presence

Companies use portals in two directions: inwards, inside the company;
and outwards, as a window to the world and the open source community.
The internal portal hosts the compliance policies, guidelines, documents,
training, announcements, and access to mailing lists. The external portal
offers a public platform for the world and the open source community,
as well as a venue to post source code of open source packages,
acknowledgements, and other disclosures, in fulfillment of
license obligations.

Open Source Compliance in the Enterprise

36

Education

Education is an essential building block in a compliance program, to help
ensure that employees possess a good understanding of policies governing
the use of open source software. The goal of providing open source and
compliance training — formally or informally — is to raise awareness of
open source policies and strategies and to build a common understanding
around the issues and facts of open source licensing as well as the
business and legal risks of incorporating open source software in products
and/or software portfolios. Training also serves as a venue to publicize and
promote the compliance policy and processes within the organization and
to foster a culture of compliance.

Formal Training

Depending on the size of the company and the extent to which open source
is included in its commercial offerings, the company can mandate that
employees working with open source take formal instructor-led courses,
possibly culminating in actual exams.

Informal Training

Informal training channels may include any or all of the following:

• Brown bag seminars: Brown bag seminars are usually
presentations made during lunchtime by a company employee or an
invited speaker. The goal of these seminars is to present and evoke
discussions of the various aspects of incorporating open source
in a commercial product or an enterprise software portfolio. These
sessions can also include discussions of the company’s compliance
program, policies, and processes.

• New employee orientation: In some instances, the Compliance
Officer presents on the company’s compliance efforts, rules,
policies, and processes to new employees as part of employee
orientation, supplying new employees with necessary open source
management information: who to talk to, what internal website to
visit, how to sign-up for open source and compliance training, etc.

Open Source Compliance in the Enterprise

37

Automation

Developers who wish to use or contribute to open source software will be
requested to submit online requests and get proper approvals. This process
is best managed via an automated online system, commonly a bug tracker
that has a specifically designed workflow to accommodate the management
of open source compliance.

Messaging

Messaging, both internal and external, is an integral part of any compliance
program. The single most important recommendation with respect to
messaging is to be clear and consistent, whether it is internally explaining
the company’s goals and concerns around open source to your employees
or externally toward the developer communities of the open source projects
you use in your product/software stack.

COMPLIANCE CHALLENGES AND SOLUTIONS
Companies will almost certainly face challenges establishing their open
source compliance program. In the following sections, we discuss some
of the most common challenges, and offer recommendations on how to
overcome them.

Creating a Compliance Program

The first challenge is to balance the compliance program and its supporting
infrastructure with (existing) internal processes while meeting deadlines to
ship products and launch services. Various approaches can help ease or
solve such challenges and assist in the creation of a streamlined program
that is not seen as a burden to development activities.

Open Source Compliance in the Enterprise

38

Proposed Solutions

EXECUTIVE SUPPORT

It is important to have executive-level commitment to the open source
management program to ensure success and continuity.

LIGHTWEIGHT POLICIES AND PROCESSES

Processes and policies are important; however, they have to be light
and efficient so that development teams do not regard them as overly
burdensome to the development process.

Streamline open source management upon two important foundational
elements: a simple and clear compliance policy and a lightweight
compliance process.

MANDATE BASIC RULES

As part of putting the compliance program in place, you will need to
establish some simple rules that everyone must follow:

• Require developers to fill out a request form for any open source
software they plan to incorporate into a product of software stack.

• Require third-party software suppliers to disclose information about
open source software included in their deliverables. Your software
suppliers may not have great open source compliance practices,
and it is recommended that you update your contractual agreement
to include language related to open source disclosures.

• Mandate architecture reviews and code inspections for the Open
Source Review Board (OSRB) to understand how software
components are interrelated and to discover license obligations that
can propagate from open source to proprietary software. You will
need proper tooling to accommodate a large-scale operation.

Open Source Compliance in the Enterprise

39

• Scan all incoming software received from third party software
providers and ensure that their open source disclosures are correct
and complete.

INTEGRATE COMPLIANCE IN THE DEVELOPMENT PROCESS

The most successful way to establish compliance is to incorporate the
compliance process and policies, checkpoints and activities as part of
existing software development processes.

Long-Term Goals versus Short-Term Execution

Figure 4 described the essential elements needed for a successful
compliance program. Some team members may be overwhelmed by the
amount of work needed to implement such a complete program. In reality,
it is not all that difficult, because you do not have to implement all elements
simultaneously. The priority for all organizations is to ship products and
services on time while building and expanding their internal open source
compliance infrastructure. Therefore, you should expect to build your
compliance infrastructure as you go, keeping in mind scalability for future
activities and products. The key is thoughtful and realistic planning.

Proposed Solutions

• Plan a complete compliance infrastructure to meet your long-
term goals, and then implement the pieces stepwise, as needed
for short-term execution. For instance, if you are just starting to
develop a product or deliver a service that includes open source
and you do not yet have any compliance infrastructure in place,
the most immediate concern should be establishing a compliance
team, processes and policy, tools and automation, and training your
employees. Having kicked off these activities (in that order) and
possessing a good grip on the build system (from a compliance
perspective), you can move on to other program elements.

• Establish policies and processes.

• Incorporate compliance as part of the development process.

Open Source Compliance in the Enterprise

40

Communicating Compliance

Communication is essential to ensure the success of compliance activities.
Two types of communication activities are important to consider: internal
with your organization, and external towards the developer communities of
the open source projects used in your products.

Internal Communication

Companies need internal compliance communication to ensure that
employees are aware of what is involved when they include open source in
a commercial software portfolio, and to ensure that they are educated about
the company’s compliance policies, processes, and guidelines. Internal
communications can take any of several forms:

• Email communication providing executive support and of open
source compliance activities

• Formal training mandated for all employees working with open
source software

• Brown-bag open source and compliance seminars to bring
additional compliance awareness and promote active discussion

• An internal open source portal to host the company’s compliance
policies and procedures, open source related publications and
presentations, mailing lists, and a discussion forum related to open
source and compliance

• A company-wide open source newsletter, usually sent every other
month or on quarterly basis, to raise awareness of open source
compliance

External Communication

Companies need external compliance communications to ensure that
the open source community is aware of their efforts to meet the license
obligations of the open source software they are using in their products.

Open Source Compliance in the Enterprise

41

External communications can take one of several forms:

• Website dedicated to distributing open source software for the
purpose of compliance

• Outreach and support of open source organizations: Such activities
are important to help the company build relationships with open
source organizations, understand the roles of these organizations,
and contribute to their efforts where it makes sense

• Participation in open source events and conferences: Participation
can be at various levels ranging from sponsoring an event, to
contributing presentations and publications, or simply sending
developers to attend and meet open source developers and foster
new relationships with open source community members

Establishing a Clean Software Baseline

One of the initial challenges when starting a compliance program is to find
exactly which open source software is in use and under which licenses it
is available. This initial auditing process is often described as establishing
a clean compliance baseline for your product or software portfolio. This
is an intensive activity over a period of time that can extend for months,
depending on how soon you started the compliance activities in parallel to
the development activities.

Proposed Solutions

Organizations achieve initial compliance through the following activities:

• Early submission and review of open source usage requests.

• Continuous automated source code based on a predefined interval
of time for all source code.

• Continual scans on the source code base, including that received
from third-party software providers, to intercept source code
that was checked into the code base without a corresponding

Open Source Compliance in the Enterprise

42

compliance ticket. Such source code scans can be scheduled to
run on a monthly basis, for instance.

• Enforced design and architectural review, in addition to code
inspections, to analyze the interactions between open source,
proprietary code, and third party software components. Such
reviews are mandatory only when a given interaction may invoke
license compliance obligations.

If a company fails to establish baseline compliance, it is almost guaranteed
that future revisions of the same product (or other products built using the
initial baseline) will suffer from compliance issues.

To guard against such scenarios, companies should consider the following:

• Offer simple but enforced policies and lightweight processes.

• Include compliance checkpoints as part of the software
development process as it moves from concept into shipping
a product or software stack. Ideally, with every development
milestone, you can incorporate a corresponding compliance
milestone, ensuring that all software components used in the build
have parallel and approved compliance tickets.

• Ensure availability of a dedicated compliance team. This topic is
discussed at length in a later chapter.

• Utilize tools and automation to support efficient processing of
compliance tickets. This topic is discussed in a later chapter.

Maintaining Compliance

There are several challenges in maintaining open source compliance,
similar to those faced when establishing baseline compliance. In fact,
many of the steps are identical, but on a smaller, incremental scale.
Maintaining compliance is a continuous effort that depends on discipline
and commitment to build compliance activities into existing engineering and

Open Source Compliance in the Enterprise

43

business processes.

Figure 7 illustrates the concept of incremental compliance, whereby you
need to ensure compliance of whatever source code changes took place
between the initial compliant baseline and the current versio

Figure 7. Example of incremental compliance

Proposed Solutions

Companies can maintain open source compliance through the
following activities:

• Adherence to the company’s compliance policy and process, in
addition to any provided guidelines

• Continuous audits of all source code integrated in the code base,
regardless of its origins

• Continuous improvements to the tools used in ensuring compliance
and automating as much of the process as possible to ensure high
efficiency in executing the compliance program

Institutionalization and Sustainability

Maintaining open source compliance activities is an ongoing challenge
as the organization grows and ships more products and services using
open source software. Companies can take several steps to institutionalize
compliance within their development culture and to ensure its sustainability.

Open Source Compliance in the Enterprise

44

Proposed Solutions

SPONSORSHIP

Executive-level commitment is essential to ensure sustainability of
compliance activities. There must be a company executive who acts as
ongoing compliance champion and who ensures corporate support for
open source management functions.

CONSISTENCY

Achieving consistency across the company is key in large companies with
multiple business units and subsidiaries. A consistent interdepartmental
approach helps with recordkeeping, and also facilitates sharing code
across groups.

MEASUREMENT AND ANALYSIS

Measure and analyze the impact and effectiveness of compliance activities,
processes, and procedures with the goal of studying performance and
improving the compliance program. Metrics will help you communicate
the productivity advantages that accrue from each program element when
promoting the compliance program.

REFINING COMPLIANCE PROCESSES

The scope and nature of an organization’s use of open source is dynamic
— dependent on products, technologies, mergers, acquisitions, offshore
development activities, and many other factors. Therefore, it is necessary to
continuously review compliance policies and processes and
introduce improvements.

Furthermore, open source license interpretations and legal risks continue to
evolve. In such a dynamic environment, a compliance program must evolve
as well.

Open Source Compliance in the Enterprise

45

ENFORCEMENT

A compliance program is of no value unless it is enforced. An effective
compliance program should include mechanisms for ongoing monitoring
of adherence to the program and for enforcing policies, procedures, and
guidelines throughout the organization. One way to enforce the compliance
program is to integrate it within the software development process and
ensure that some measurable portion of employee performance evaluation
depends on their commitment to and execution of compliance
program activities.

STAFFING

Ensure that staff is allocated to the compliance function, and that adequate
compliance training is provided to every employee in the organization. In
larger organizations, the compliance officer and related roles may grow to
be FTEs (full time equivalents); in smaller organizations, the responsibility of
open source management is more likely to be a shared and/or a
part-time activity.

Open Source Compliance in the Enterprise

46

Chapter 3
ACHIEVING COMPLIANCE: ROLES
AND RESPONSIBILITIES

A single individual, no matter how adept, can’t successfully implement
open source compliance across a whole organization. Figure 8 presents
a breakdown of the different departments responsible for achieving open
source compliance. There are two teams involved in achieving compliance:
a core team and an extended team, with the latter typically being a superset
of the former.

Figure 8. Individuals and teams involved in ensuring open source compliance

Open Source Compliance in the Enterprise

47

The core team, often called the Open Source Review Board (OSRB),
consists of representatives from engineering and product teams, one or
more legal counsels, and the Compliance Officer. Table 4 describes the
roles and responsibilities of each participant in this core team.

The extended team, described in Table 5 (page 49), consists of various
individuals across multiple departments that contribute on an on-going
basis to the compliance efforts: Documentation, Supply Chain, Corporate
Development, IT, Localization, and the Open Source Executive Committee
(OSEC). However, unlike the core team (in substantial organizations),
members of the extended team are working on compliance only on a part-
time basis, based on tasks they receive from the OSRB.

Table 4. Primary roles and responsibilities of the compliance core team (OSRB)

Participant Primary Roles and Responsibilities

Legal Representative

This representation varies from a
Legal counsel to a Legal paralegal
depending on the task at hand.

Participate in OSRB and OSEC

Review and approve usage, modification,
distribution of open source (OS) software

Provide guidance on licensing

Contribute to and approve training

Contribute to improving the OS
compliance program

Review and approve content of
OS portals

Review and approve list of obligations to fulfill

Review and approve open
source notices

Open Source Compliance in the Enterprise

48

Participant Primary Roles and Responsibilities

Engineering and Product
Team Representative

In some companies, there is no
distinction between engineering and
product teams.

Participate in OSRB and OSEC

Follow compliance policies and processes

Integrate compliance practices in
dev process

Contribute to improving the compliance
program

Follow technical compliance guidelines

Respond quickly to all questions

Conduct design, architecture, and code reviews

Prepare software packages
for distribution

Compliance Officer

Open source compliance officer is not
necessary a dedicated resource. In
most cases, the individual fulfills the
role of Manager or Director of Open
Source.

Drive all compliance activities

Coordinate source code scans
and audits

Coordinate distribution of source
code packages

Participate in OSRB and OSEC

Contribute to compliance and
OS training

Contribute to improving
compliance program

Report to OSEC on
compliance activities

Contribute to creation of new tools to facilitate
automation, discovery of OS in dev environment

Open Source Compliance in the Enterprise

49

Table 5. Primary roles and responsibilities of the compliance extended team

Participant Primary Roles and Responsibilities

Open Source Executive Committee
(OSEC) Decide on open source
strategy

Review and approve proposals to release IP

Review and approve proposals to release
proprietary source code under an open source
license. This is not required if the source code
was created with the assumption that it will be
open sourced.

Documentation Include open source license information and
notices in the
product documentation

Localization Translate basic information in target languages
about open source information related to the
product or software stack

Supply Chain Mandate third party software providers to
disclose open source in licensed or purchased
software components

Assist with ingress of third party software
bundled with and/or includes open source
software

Information Technology (IT) Provide support and maintenance for the tools
and automation infrastructure used by the
compliance program

Create and/or acquire new tools based on
OSRB requests

Open Source Compliance in the Enterprise

50

Participant Primary Roles and Responsibilities

Corporate Development Request open source compliance be
completed before a merger
or acquisition

Request open source compliance be
completed when receiving source code from
outsourced development centers or third-party
software vendors

OPEN SOURCE REVIEW BOARD (OSRB)

The OSRB is responsible for:

• Ensuring mutual compliance with third-party software and open
source software licenses.

• Facilitating effective usage of and contributions to open
source software.

• Protecting proprietary intellectual property (and consequently
product differentiation) by ensuring that open source license
obligations do not propagate to proprietary or third party software

On a daily basis, OSRB members are involved in the following tasks:

• Establish the Compliance End-to-End Process: The OSRB is
responsible for creating the compliance end-to-end process
including usage, audit, development, engagement, assurance, and
compliance management. Chapter 4 provides an overview of the
end-to-end compliance process.

• Create and maintain compliance policies, processes, guidelines,
templates, and forms used in the compliance program.

Open Source Compliance in the Enterprise

51

• Review requests for the use, modification, and distribution of open
source: The OSRB reviews and approves incoming requests from
engineering and product teams for using open source. Chapter 6
provides a discussion on the usage process.

• Perform software audits: The OSRB performs audits on all software
included in a product, which involves the following tasks:

• Run a source code scanning tool over the software base

• Analyze the results provided by the scanning tool

• Address all the hits, possible matches, and licensing conflicts
flagged by the scanning tool

• Oversee the closure of all issues identified by scanning tools

• Create a final audit report and ensure that all identified issues have
been closed

Depending on the size of the organization, auditing responsibilities can
be assigned to the OSRB or to an independent team (auditing team) that
reports to the Compliance Officer. Chapter 6 provides a discussion of the
auditing process.

• Perform architectural reviews: As part of the approval process, the
OSRB performs architecture review with Engineering representative
to analyze the interaction between open source code, proprietary
code, and third-party source code. The goal of this review is to
ensure that architectural guidelines are respected and that the
interactions among open source, proprietary, and third-party
software are within the acceptable legal guidelines.

• Perform linkage analysis review: The OSRB also performs a
linkage analysis to determine if any open source license obligations
propagate to proprietary or third-party software through linking (from
API calls, etc.).

Open Source Compliance in the Enterprise

52

• Verify the resolution of issues that deter releasing product or
launching services that contain open source.

• Provide guidance on open source questions coming from company
staff and engineers.

• Perform code inspections as part of the pre-distribution verification,
to ensure that open source license text and copyright notices have
been kept intact and that engineers have updated the change logs
to reflect the changes introduced to the source code.

• Compile a list of license obligations that must be met to use the
open source software in question and pass it to appropriate
departments for fulfillment: Once the OSRB has approved the usage
of open source in a product, as part of the approval process the
OSRB compiles a list of obligations and passes it to the various
other individuals and teams to ensure its fulfillment. As part of the
pre-distribution process, the OSRB performs final checks before
product or service releases, including verifying the fulfillment
of obligations.

• Develop and offer open source and compliance training: The
OSRB drives the development of open source and compliance
training to ensure that employees have a good understanding of
the company’s open source policies and compliance practices. In
addition, the OSRB should educate employees on some of the most
common open source licenses and the issues surrounding using
open source in commercial contexts. Training must be mandatory
for all staff engaged in management and development of software
using open source.

• Host and maintain the company’s open source websites: The
internal website, intended for employees, focuses on open source
processes and policies, guidelines, training, and announcements.
The external website usually exists for the primary reason of making
available source code packages in fulfillment of certain compliance
obligations.

Open Source Compliance in the Enterprise

53

• Handle compliance inquiries: The OSRB is responsible for
answering any inquiries sent to the company in relation to open
source compliance. Chapter 9 discusses the process of handling
compliance inquiries.

• Maintain records of compliance: OSRB is responsible for ensuring
that all compliance records for any given open source software
component are up to date.

• Review end-user documentation to ensure that appropriate
copyright, attribution, and license notices are given to consumers
regarding open source included in the product or the software stack.
In addition, specific to the GPL/LGPL family of licenses, provide a
written offer on how to obtain the source code, when applicable.

• Recommend new tools to be used as part of the compliance
infrastructure that will contribute to making the compliance work
more efficient through automation.

• Sign off on product distribution from an open source
compliance perspective.

• Develop community involvement policy, process, procedures, and
guidelines. This responsibility is not compliance-related; however, it
is listed here for completion of the list of responsibilities.

LEGAL

The Legal Counsel is a core member of the OSRB, the committee that
ensures compliance with open source licenses. The Legal Counsel focuses
on four essential duties:

1. Provide approval regarding the use of open source in products
or services

The approval of the Legal Counsel is required when using open source in
a commercial product. Typically, the Legal Counsel reviews the compliance
ticket in the online tracking system (for instance, JIRA or Bugzilla), the
resulting report from the source code scanning tool, and the license

Open Source Compliance in the Enterprise

54

information provided with the source code package. They then evaluate
risk factors based on feedback provided by both engineering and the open
source compliance officer. As part of this exercise, the Legal Counsel also
decides on incoming and outgoing licenses of the software component in
question. The incoming licenses are the licenses of all source code included
in a given body of code; the outgoing licenses are the licenses under
which the source code and/or object files are being made available to its
recipients.

2. Advise on open source licensing

• Offer guidance about open source license obligations.

• Advise on licensing conflicts arising from incompatible or conflicting
licenses primarily based on company policy, which is some cases
rely on external factors such as legal opinions of relevant open
source organizations.

• Advise on IP issues associated with the use of open source. This is
especially the case when the company is about to release previously
proprietary source code under open source license(s).

• Provide recommendations and guidance to engineering teams on
open source questions
and concerns.

3. Review and approve updates to end-user documentation

This form of legal support is related to ensuring that appropriate open
source notices (copyright, attributions, and license notices) are provided
to consumers in relation to any open source included in the product. In
addition, if there is source code licensed under one of the GPL/LGPL family
of licenses, a written offer needs to be provided along with information on
how to obtain the source code.

Open Source Compliance in the Enterprise

55

4. Contribute to the startup and ongoing management of the open
source compliance program

• Establish and maintain the open source policy and process.

• Handle inquiries sent to the company in relation to open
source compliance.

• Provide training around open source licenses, company policies,
and guidelines.

ENGINEERING AND PRODUCT TEAMS

Engineering and product teams may have one or more representatives
who participates in the OSRB, tracks down all compliance-related
tasks assigned to engineering, and ensures proper resolution. In parallel,
engineering and product teams have several responsibilities with respect to
open source compliance:

• Submit requests to use open source software: Engineering and
product teams decide what external software to bring into the
product baseline, including third-party and open source. Their
primary responsibility from a compliance perspective is to submit
a usage form for any open source that is planned for inclusion in a
product or service. The form describes the intended use of the open
source in question and helps construct and maintain a good record
of software origin and provenance.

• Follow technical compliance guidelines: Engineering and product
teams should follow OSRB technical guidelines to architect, design,
integrate, and implement source code. The OSRB guidelines
typically cover:

• Common mistakes and how to avoid them

• Rules to follow when integrating libraries and other middleware
to avoid linkage issues that might arise

Open Source Compliance in the Enterprise

56

• Development in kernel space versus user space (on Linux),
especially with whole-platform development in
embedded environments

• Specific engineering situations that are applicable to open
source compliance

• Conduct design reviews: Engineering teams should continuously
conduct design reviews to discover and remedy any compliance
issues in a timely manner. The Compliance Officer drives the design
reviews and invites different engineering participants depending on
the software component in question.

• Cooperate with OSRB: Engineering teams must respond promptly
to questions asked by the OSRB and cooperate in resolving
compliance tickets.

• Track changes: Maintain a change log for each modified open
source component: As part of meeting the open source license
obligations and depending on the open source license in questions,
some licenses (such as the GPL/LGPL family of licenses) mandate
that modified files carry prominent notices stating that you changed
the files and the date of the change(s).

• Prepare source code packages for distribution: Engineering teams
prepare the source code packages that will be made available on a
public website as part of meeting open source license obligations
(other source code distribution methods are discussed in a
later chapter).

• Integrate compliance milestones as part of the development
process: This exercise takes place in collaboration with the OSRB
and the Compliance Officer.

• Undergo open source training: All engineers must take the available
open source training.

• Monitor the open source projects to determine whether any
bug fixes or security patches have become available, and take

Open Source Compliance in the Enterprise

57

responsibility for updating the open source component used in
the product. The individual package owner within the organization
usually performs this specific task.

COMPLIANCE OFFICER

The Compliance Officer, also called OSRB Chair or Manager/Director of
Open Source, chairs the OSRB and manages the compliance program.

Ideally, the compliance officer must possess as many as possible of
the following:

• Solid understanding of common open source licenses and
obligations to discuss with legal counsel Knowledge of
industry practices

• Knowledge and experience in establishing corporate-wide policies
and processes

• Technical knowledge related to the company’s products

• Historical perspective on open source

• Knowledge of community consensus and practices

• Contacts in the key open source project communities

• Contacts in the open source organizations such as the Linux
Foundation, Apache Foundation, Mozilla Foundation, Software
Freedom Law Center, etc.

In addition to the responsibilities pertaining to the OSRB, the Compliance
Officer carries the following duties:

• Drive the compliance due diligence end-to-end process and act as
the compliance program manager, ensuring all compliance-related
tasks are addressed and there are no compliance issues blocking
products from shipping

Open Source Compliance in the Enterprise

58

• Coordinate source code scans and drive all auditing issues
to closure

• Participate in engineering design reviews, code inspections, and
distribution readiness assessments to assure that the engineering
and product teams follow all compliance processes and policies and
conform to the approved OSRB usage form

• Coordinate source code distribution of open source packages
(when stipulated by licenses) with engineering and product teams,
including preparing and verifying a distribution checklist for each
open source package

• Act as liaison between OSEC and OSRB

• Escalate compliance issues to OSEC

• Act as liaison between the engineering and product team and the
OSRB and OSEC in regard to usage plan approval processes

• Report on compliance activities to the OSEC, including flagging
issues that prevent shipping a product or service

OPEN SOURCE EXECUTIVE COMMITTEE

The Open Source Executive Committee (OSEC) consists of engineering,
legal, and product marketing executives in addition to the Compliance
Officer. The OSEC is responsible for setting open source strategy, reviewing
and approving release of IP, and providing approvals to release previously
proprietary source code under a specific open source license.

DOCUMENTATION

The documentation team is responsible for including written offers and any
appropriate open source notices in the product documentation. Figure 9, on
the next page, provides an illustration of how such notices are prepared and
approved. The process starts with the compliance officer, who prepares the
draft of the written offer and the notices that are to be made available once
the product ships. Next, the legal counsel reviews the draft proposed by the

Open Source Compliance in the Enterprise

59

compliance officer, edits it, and pushes a final version to the documentation
team. The last step of the process is including the final text in the
product documentation.

Figure 9. The role of the documentation team in updating the product documentation,

reflecting the presence of open source in the product

LOCALIZATION

The localization team is responsible for translating basic language that
informs users of the availability of open source software in the product and
directs them to the proper notices made available in English.

SUPPLY CHAIN

Supply chain (software procurement) procedures must be updated to
address the acquisition and use of open source. It is highly recommended
that you examine software supplied to you by third-party software providers.
Supply Chain personnel are usually involved in moving software from
the suppliers to your company. Supply Chain can support open source
compliance activities by mandating that third-party software (and hardware)
providers disclose any open source that is being delivered with their wares,
and by assisting with licensing-in third-party software that is bundled with
and/or integrates open source packages.

A best practice in this area is to mandate that third-party software providers

Open Source Compliance in the Enterprise

60

disclose any open source used in their offering, along with a statement on
how they plan to meet the applicable open source license obligations. If
third-party software includes open source, Supply Chain must ensure that
open source license obligations are satisfied, since, after initial ingress,
those obligations become your responsibility as distributor of a product or
service that includes open source. It is not acceptable to point “upstream”
to a supplier and to inform recipients of your code that meeting license
obligations was the responsibility of the supplier instead of your own.

IT

IT provides support and maintenance for the tools and automation
infrastructure employed by a compliance program. This responsibility
spans the servers hosting the various tools, the tools, mailing lists, and web
portals. In addition, IT may receive requests from the OSRB to develop and/
or acquire tools that will be used to improve effectiveness the
compliance activities.

CORPORATE DEVELOPMENT

Corporate Development is involved with open source compliance in two
major scenarios: mergers and acquisitions transactions, and
outsourced development.

Mergers and Acquisitions

If a company is considering a merger or is the target of an acquisition, it
should structure its compliance program to offer a level of disclosure and
provide representations. Company policies regarding merger and acquisition
transactions need to be updated to account for open source. Corporate
Development must mandate that source code be evaluated from a
compliance perspective prior to any merger or acquisition to avoid surprises
that might derail discussions or affect the company’s valuation. For the
acquiring company, comprehensive code evaluation assures accurate
valuation of software assets and mitigates the risk of unanticipated licensing
issues undermining future value. In addition, the acquiring company may
include provisions in the purchase agreement requiring the disclosure of

Open Source Compliance in the Enterprise

61

open source that is subject to the transaction. Diligence practices should be
updated to require open source disclosure and include guidance regarding
the review of any disclosed open source and licenses.

Outsourced Development

Agreements relating to outsourced development of software should also
be updated to reflect compliance procedures and to ensure that other
provisions of these agreements (such as representations and warranties)
are broad enough to cover the risks posed by open source. Corporate
Development must mandate that all source code received from outsourced
development centers must go through the compliance process to discover
all open source being used and to ensure proper actions to fulfill
license obligations.

Other Corporate Transactions

Corporate Development is also involved with compliance in transactions
such as spin-offs and joint ventures. In some cases, the compliance due
diligence may result in a decision not to proceed with the transaction, if that
the compliance situation proves far from ideal.

Open Source Compliance in the Enterprise

62

Chapter 4
OPEN SOURCE COMPLIANCE PROCESS

Implementation of open source compliance processes can vary across
organizations based on a number of factors including the underlying
development processes into which compliance must fit, the size and nature
of the code base, the number of products or services involved, the amount
of externally supplied code, the size and organizational structure, and so on.
But the core elements of compliance usually remain the same: identifying
the open source in the code base, reviewing and approving its use, and
satisfying obligations. This chapter focuses on the core elements of a
compliance process. The result of compliance due diligence is identification
of all free and open source software used in a product intended for external
distribution, and a plan to meet the attendant license obligations. Figure 10
offers a high-level overview of a sample end-to-end compliance process,
and illustrates the various compliance steps or phases that components
containing free and open source software undergo before receiving approval
for integration in an externally distributed product or service.

Figure 10. Simplified view of the compliance end-to-end process

What you see in Figure 10 is just one example, as there are many ways
of organizing the compliance process to accomplish the same goals.
Throughout this chapter we will examine these various phases, the inputs
and outputs of each phase, and how to control software usage via the
compliance process.

Open Source Compliance in the Enterprise

63

EFFECTIVE COMPLIANCE

The term due diligence refers to a number of concepts involving source
code inspection, source code surveillance, or the performance of quality
duties and system audits. In the case of open source compliance, due
diligence is required to ensure the following:

• Open source software used in the product has been identified,
reviewed, and approved

• Product implementation includes only approved open source
components and licenses.

• All obligations related to the use of licensed material have
been identified

• Appropriate notices have been provided in documentation, including
attributions and copyright notices

• Source code, including modifications (when applicable), has been
prepared and is available at the time the product ships

• Verification of all the steps in the process

There are great benefits to having an end-to-end compliance process that is
simple and well understood within the organization. Such a process would:

• Enable organizations to benefit from open source while complying
with obligations

• Move open source use from ad hoc to a standardized process

• Help manage acquisition of open source components

• Help employees understand how to work with open source in a
responsible way

• Improve the relationship with developers in the various open source
projects used by your organization

Open Source Compliance in the Enterprise

64

• Accelerate exchange of information and ideas with the project
communities of integrated code through sharing of source
code modifications

• Speed innovation, since the organization is able to safely adopt
open source components and use them as enablers for new
services and products

ELEMENTS OF AN END-TO-END COMPLIANCE PROCESS

There are ten key steps in an end-to-end compliance process (Figure 11,
next page):

1. Identification of incoming source code

2. Auditing source code

3. Resolving any issues uncovered by the audit

4. Completing appropriate reviews

5. Receiving approval to use open source

6. Registering open source in the software inventory

7. Updating product documentation to reflect open source usage

8. Performing verification of all previous steps prior to distribution

9. Distributing source code packages

10. Performing final verifications in relation to distribution

Open Source Compliance in the Enterprise

65

Figure 11. End-to-end compliance process

The remainder of this chapter will address each of these ten steps in detail.

Step 1 – Identification of Open Source

The goal of this initial step is to monitor the ingress and incorporation of
open source in a software portfolio, either as a standalone package or
embedded within third-party or company-developed software. There are
several methods to identify open source used in the product:

• A request to use open source: This is the most common method
for identifying the usage of open source in a product. Engineering
staff or Product Management is required to inform the Open Source
Review Board (OSRB; described in Chapter 3) or compliance team
of the intent to use specific open source in a specific product or
platform release. The submitter provides information regarding the
intended use of the open source package for review and approval.

• Auditing the full platform or product code base to establish a
compliance baseline, and then auditing code modules that are
changed in subsequent releases.

• Third-party software provider due diligence: This involves requiring a
full disclosure of open source components in products provided by
third-party suppliers, with an accompanying review of the disclosure
by the open source compliance team. In some cases, it will make

Open Source Compliance in the Enterprise

66

sense to require third-party software vendors to provide an audit
of the supplied code as an additional layer of diligence. This helps
ensure you are controlling the intake of open source by
your product.

• Auditing proprietary (company-developed) software components:
In some instances, engineers may decide to copy/paste source
code from open source components and include it in proprietary
software components. Therefore, it is important to also audit
company-developed software components, since they may include
open source code, which may lead to compliance failures if not
discovered before product ship date.

• Inspect all open source components entering the organization
source code repository that do not correspond to an incoming
request to use open source: Relying on engineers to fill out forms
announcing their intent to use open source is not always a reliable
method to account for all incoming open source software. Therefore,
as a backup, consider setting up a source code control system with
a separate folder for open source and a notification alert any time
there is a check-in to this folder. Since it is always a recommended
practice to separate open source, company-developed proprietary
software, and third party software in different folders in your build
system, it becomes feasible to set up alerts when new code is
being submitted. If a new component was submitted that does not
correspond to an existing usage (open source request) form, then it
is a new component and requires that a new form be filled out.

Identification phase prerequisite

One of the following conditions is met:

• An incoming OSRB form requesting using a specific open source

• Discovery of an open source being used (without proper
authorization) via a platform scan

Open Source Compliance in the Enterprise

67

• Discovery of an open source being used as part of third
party software

Identification phase outcome

• A compliance record is created (or updated) for the open source

• An audit is requested to scan the source code

Step 2 – Auditing Source Code

The second step in compliance due diligence consists of scanning the
source code using automated analysis tools to discover matches with
known open source projects.

The auditing personnel perform a source code scan iteratively from one
release to another, to build a chain of evidence that proves what is included
in the release is compliant with the various applicable open source licenses.

The goals of the audit are to:

• Update the release bill of materials to account for any open source
added (or removed) since the last previous scan

• Confirm the origin(s) of the source code, including the provenance of
any open source

• Flag any dependencies, code matches, and licensing conflicts

Auditing phase prerequisite

A proper compliance record (also called a ticket) is created capturing all
necessary information about the usage of that specific open source and
providing the location of the source code within the internal build system. In
some cases, specifically when a full platform scan is done, an open source
component may be scanned before having a proper compliance report. In
this case, a record is created when the open source component
is discovered.

Open Source Compliance in the Enterprise

68

Auditing phase outcome

• An audit report identifying the origins and licenses of the
source code

• Change request tickets are filed against the appropriate engineering
team for any issues identified during the audit that require resolution

Several actions can trigger discovery and an audit for software components
(Figure 12, next page):

• A request from a developer to use an open source component

• A source code scan of the entire software stack

• Source code changes in a previously approved component

• Open source received from a third-party vendor

• Source code downloaded from the web (unknown author or license)

• Proprietary software committed into the source code
repository system

• Open source added to the code repository that does not
correspond to a usage form

• Using previously approved open source in a different product

Open Source Compliance in the Enterprise

69

Figure 12. Methods to identify and audit incoming open source

Open Source Compliance in the Enterprise

70

Step 3 – Resolving Issues

In this step of the compliance due diligence, all issues identified during the
auditing step are resolved. The OSRB Chair monitors closure of tickets
assigned to engineers during the Audit step. Once the engineers have
resolved the identified issues, the OSRB Chair should request a new audit
to confirm that the resolved issues no longer exist.

Resolving Issues phase prerequisite

A source code svcan has been completed, and an audit report is generated
identifying the origins and licenses of the source code. The report has
flagged source code files that were not identified, or possible license
conflicts resulting from mixing source code coming in under different
licenses. The Compliance Officer will drive the effort to resolve these issues.

Resolving Issues phase outcome

A resolution for each of the flagged files in the report and a resolution for
any flagged license conflict.

Step 4 – Reviews

Once the auditing is complete and all issues identified earlier have been
resolved, the compliance ticket for a specific software component moves
to the review step. Various reviews are performed, as illustrated in Figure 13
(next page), and all identified issues must be resolved. The reviewers need
to understand the licenses that govern use, modification, and distribution
of the software, and identify the obligations of the various licenses. For any
given software components, the reviewers of the compliance ticket are:

• Internal package owner (the developer working on specific source
code component)

• Source code scanning or auditing personnel

Open Source Compliance in the Enterprise

71

• OSRB (Open Source Review Board), which includes OSRB chair
(Compliance Officer), Legal counsel, and OSRB
engineering representative

• OSEC (Open Source Executive Committee)

Figure 13. Reviewers of the compliance ticket and their roles

As part of this step of compliance due diligence, there are two important
reviews: the architecture review and the linkage analysis review.

Open Source Compliance in the Enterprise

72

Architecture Review

The goal of the architecture review is to analyze any interactions between
the open source, third-party, and proprietary code. The result of the
architecture review is an analysis of the licensing obligations that may
extend from the open source components to the proprietary components
(and vice versa). The internal package owner, the OSRB engineering
representative, and the open source expert usually perform the architecture
review. If they identify a dependency resulting in a licensing conflict, the
OSRB Chair will issue a ticket to Engineering to resolve the dependency
problem by reworking the source code.

Linkage Analysis Review

The goal of a linkage analysis review is to find potentially problematic code
combinations at the static and dynamic link level, such as linking a GPL
or more commonly an LGPL-licensed library to a proprietary source code
component. The OSRB Chair performs this review using an automated tool.
Linkage conflicts are reported to Engineering to resolve.

Review phase prerequisite

Source code has been audited and all issues have been resolved.

Review phase outcome

OSRB members perform an architecture review and a linkage analysis
for the specific component and mark it as ready for the next step (i.e.,
Approval) if no issues are uncovered.

Step 5 – Approvals

Once all reviews have been completed, the software component’s
compliance ticket moves to the approval step, where it is either approved
for usage in the product or not. The approval comes from the OSRB (which
includes, as described in an earlier chapter, Legal Counsel, an Engineering
representative, and an open source expert).

Open Source Compliance in the Enterprise

73

For most software components, approval is granted by the OSRB once
a ticket has progressed to that point in the compliance process. Once
the OSRB approves the usage of an open source component, the OSRB
communicates the approval to the product teams so they understand their
responsibilities and begin preparations to fulfill the license obligations. If the
OSRB rejects the use of the open source component, they communicate
the reason for rejection to the requester, and this information is recorded
as part of the compliance ticket. As a result, the open source component
cannot be used in the product, although the requester can consider
submitting an appeal for reconsideration by the OSRB.

Approvals phase prerequisite

All OSRB members have reviewed the compliance ticket, and the OSRB
has completed the architecture review and linkage analysis.

Approvals phase outcome

Approve or deny usage of the specific component.

Step 6 – Registration

Once a software component has been approved for usage in a product
or as part of a service, its compliance ticket will be updated to reflect the
approval. It will also be added to the software inventory that tracks open
source use and use cases.

If you follow a conservative approach with your compliance practices, you
would approve open source software for a specific version and usage in
a specific product or service version. If a new version of this open source
software becomes available, you require a new approval to ensure that the
usage model and even the license are still in line with your internal policy.

Registration phase prerequisite

The OSRB has approved the component’s usage in the product.

Open Source Compliance in the Enterprise

74

Registration phase outcome

The component is registered in the software inventory, with the component
name, version, internal owner, and the details of where the component is
being used, such as product name, version, release number, etc.

Step 7 – Notices

One of the key obligations when using open source is the documentation
obligation, also referred to as the notice obligation. Companies using open
source in an externally distributed product or service must:

• Inform the end user how to obtain a copy of the source code that’s
been made available as a result of meeting the license obligations
(when applicable)

• Acknowledge the use of open source by providing required
copyright and attribution notices

• Reproduce the entire text of the license agreements for the open
source code included in
the product

If companies are non-compliant with open source license obligations,
they are not licensed, and thus exposed to legal action by the copyright
holder for copyright infringement, and can potentially lose the right to use
and distribute the software in question. In order to fulfill documentation
obligations, appropriate notices must be included with the product. In this
step of the compliance due diligence, the OSRB Chair prepares the notices
and passes them to the appropriate departments for fulfillment.

Notice phase prerequisite

The software component has been approved for usage and registered in
the software inventory.

Open Source Compliance in the Enterprise

75

Notice phase outcome

The license, copyright, and attribution notices for a specific component are
prepared and passed along to the appropriate departments to be included
in the product documentation.

Step 8 – Pre-Distribution Verifications

The next step in the compliance due diligence is to decide on the method
and mode of distribution, type of packages to distribute, and mechanism of
distribution.

The goals of the pre-distribution verification are to ensure that:

• Open source packages destined for distribution have been identified
and approved

• Source code packages (including modifications) have been verified
to match the binary equivalent shipping in the product

• Appropriate notices have been included in the product
documentation to inform end-users of their right to request source
code for identified open source

• All source code comments have been reviewed and any offending
or inappropriate content has been removed. This is not strictly a
compliance issue; however, in some cases, an innocent comment
about where the code was received can trigger a larger
compliance question.

Pre-Distribution Verifications phase prerequisite

Component has been approved for usage, it has been registered in the
software inventory, and all notices have been captured and sent
for fulfillment.

Open Source Compliance in the Enterprise

76

Pre-Distribution Verifications phase outcome

• Decide on distribution method and mode.

• Ensure that all the pre-distribution verifications have been
successfully completed.

Step 9 – Distribution

Once all pre-distribution verifications have been completed, it’s time to
upload the open source packages to the distribution website, labeled with
the product and version it corresponds to (this scenario assumes that you
have chosen this method to make source code available; other methods
are discussed in a later chapter). Note that this action is helpful to those
desiring code download but may not be sufficient by itself to satisfy license
obligations. Furthermore, a recommended practice is to provide email and
postal mail contact information for any compliance or open
source-related questions.

Distribution phase prerequisite

All pre-distribution verifications have been checked and no issue
is discovered.

Distribution phase outcome

The source code of the component in question is uploaded to the website
for distribution (if that is the distribution method of choice).

Step 10 – Final Verifications

Once you upload the open source packages to the distribution website,
validate that the packages have been uploaded correctly and can be
downloaded and uncompressed on an external computer without errors. If
you are providing a patch, ensure that it applies cleanly and that you have
specified the proper version of the upstream component.

Open Source Compliance in the Enterprise

77

Final verifications phase prerequisite:

The source code is published on the website.

Final verifications outcome

You receive verification that the source code is uploaded correctly and
accessible for download, and that it corresponds to the same version that
was approved.

Open Source Compliance in the Enterprise

78

Chapter 5
COMPLIANCE PROCESSES AND POLICIES

For the purpose of this book, the focus of the discussion is using and
integrating open source with proprietary and third-party source code in a
commercial product. The discussions exclude policies and processes for
using open source solely inside your organization for testing and evaluation
purposes. This chapter discusses usage policy and process in addition to
the base and incremental compliance process, and guidelines for achieving
incremental compliance.

POLICY

The usage policy is an essential building block in a compliance program.
This policy does not have to be lengthy or complicated. A simple policy can
be as effective as a complex one as long as it mandates the following:

• Engineers must receive approval from OSRB before integrating any
open source in a product.

• Software received from third-party vendors must be audited
to identify any open source included, which will ensure license
obligations can be fulfilled before product ships.

• All software must be audited and reviewed, including proprietary
software components, software received from third-party providers,
and open source software.

• Product must fulfill open source licensing obligations prior to
customer receipt.

• Approval for one product is not approval for another deployment,
even if the open source component is the same.

• All changed components must go through the approval process.

Open Source Compliance in the Enterprise

79

These rules ensure that any software (proprietary, third-party, open source)
that makes its way into the product base has been audited, reviewed, and
approved. Furthermore, it ensures that the company has a plan to fulfill the
license obligations resulting from using the various software components
prior to customer receipt.

PROCESS

The compliance usage process includes scanning the source code of the
software package in question, identifying and resolving any discovered
issues, performing legal and architectural reviews, and making a decision
regarding the usage approval for a given software package.

Figure 14 illustrates a simplistic view of a compliance usage process. This
figure does not demonstrate the iterative nature of such a process; a more
elaborate view is provided in Figure 17 (page 89).

Figure 14. A sample compliance usage process

Source Code Scan

In the source code scanning phase, all the source code is scanned using
a source code scanning tool. Figure 15 (page 81) illustrates some of the
factors that can trigger a source code scan, which include:

Open Source Compliance in the Enterprise

80

• An incoming OSRB usage form, usually filled out by engineering
staff. This is a simple online form that an engineer or a developer fills
out, providing basic information about the source code in question.
Upon the submission of the form, a compliance ticket (in a system
such as JIRA or Bugzilla) will be created automatically, and a source
code scanning request will be sent to the auditing staff.

• A periodically scheduled full-platform scan: Such scans are very
useful to uncover open source that may have snuck into your
software platform without an OSRB form.

• Changes in previously approved software components: In many
cases, engineers start evaluating and testing with a certain version
of an OSS component, and later adopt that component when a new
version is available.

• Source code received from a third-party software provider who may
or may not have disclosed open source

• Source code downloaded from the web with unknown author and/
or license, which may or may not have incorporated open source
in it

• A new proprietary software component entering the build system
where engineering may or may not have borrowed open source
code and used it in a proprietary software component

Open Source Compliance in the Enterprise

81

Figure 15. Events that trigger a source code scan

In preparation for legal review, the individual who runs the source code scan
should attach to the compliance ticket all the license information found
in the package, such as any COPYING, README, or LICENSE files, in
addition to any files stating copyright and attribution notices.

Identification and Resolution

In the identification and resolution phase, the auditing team inspects and
resolves each file or snippet flagged by the scanning tool.

Legal Review

In the legal review phase, the legal counsel (member of the OSRB) reviews
reports generated by the scanning tool, the license information of the
software component, and any comments left in the compliance ticket
by engineers and members of the OSRB. If there were no issues with
the licensing, the legal counsel would then decide on the incoming and
outgoing licenses of the software component, and would forward the

Open Source Compliance in the Enterprise

82

compliance ticket into the compliance architectural phase. If a licensing
issue is found, for example mixed source code with incompatible licenses,
the legal counsel will flag these issues and reassign the compliance ticket to
Engineering to rework the code. In some cases, if the licensing information
is not clear or if it is not available, the legal counsel contacts the project
maintainer or the open source developer to clarify the ambiguities and to
receive a confirmation of the license under which that specific software
component is licensed.

Architecture Review

In the architecture review, the compliance officer and the engineering
OSRB representative perform an analysis of the interaction between the
open source, proprietary, and third-party code. This is accomplished by
examining an architectural diagram that identifies:

• Open source components (used “as is” or modified)

• Proprietary components

• Components originating from third-party software providers

• Component dependencies

• Communication protocols

• Other open source packages that the specific software component
interacts with or depends on, especially if they are governed by a
different open source license

The result of the architecture review is an analysis of the licensing
obligations that may extend from open source to proprietary or third-party
software components (and across open source components as well). If the
compliance officer discovers any issues, such as a proprietary software
component linking to a GPL licensed component, the compliance officer
forwards the compliance ticket to Engineering for resolution. If there are no
issues, then the compliance officer moves the ticket to the final stage in the
approval process.

Open Source Compliance in the Enterprise

83

Final Review

The final review is usually an OSRB face-to-face meeting during which
the OSRB approves or denies usage. In most cases, if a software
component reaches the final review, it will be approved unless a condition
has presented itself (such as the software component no longer being in
use). Once approved, the compliance officer will prepare the list of license
obligations for the approved software component and pass it to appropriate
departments for fulfillment.

PROCESS STAGES’ INPUTS AND OUTPUTS
In this section, we discuss the inputs and outputs of each of the five phases
in the OSRB usage process, as illustrated in Figure 16. Please note that
these phases are for illustration purposes and may not be exactly the same
as the ones in your specific scenario.

Figure 16. Inputs and outputs of the usage process

Open Source Compliance in the Enterprise

84

Source Code Scan Phase

Input

The input to the scan phase is the OSRB usage form that an engineer has
filled out online and submitted. Table 6 (on page 97) provides details on
the form. It includes all information about the open source component in
question, in addition to the location of the source code in the source code
repository system. Periodic full-platform scans should also take place every
few weeks to ensure that no open source software component has been
included into the platform without a corresponding OSRB form.

Output

The output from the scan phase is a report produced by the source code
scanning tool that provides information on:

• Known software components in use, also known as the software Bill
of Materials (BoM)

• Licenses in effect, license texts and summary of obligations

• License conflicts to be verified by legal

• File inventory

• Identified files

• Dependencies

• Code matches

• Files pending identification

• Source code matches pending identification

Open Source Compliance in the Enterprise

85

Identification and Resolution Phase

Input

The input to this phase is the report generated by the scanning tool in the
previous phase. The report flags issues such as conflicting and incompatible
licenses. If there are no issues, then the compliance office will move the
compliance ticket forward to the legal review phase. If there are issues
to be resolved, then the compliance officer creates subtasks within the
compliance tickets and assigns them to the appropriate engineers to be
resolved. In some cases, a code rework is needed; in other cases, it may
simply be a matter of clarification. The subtasks should include a description
of the issue, a proposed solution to be implemented by engineering, and a
specific timeline for completion.

Output

In this phase, subtasks are closed, and the output is the resolution of all
issues. The compliance officer may order a re-scan of the source code and
generate a new scan report confirming that earlier issues have now been
resolved. Then the compliance officer forwards the compliance ticket to the
representative from the Legal department for review and approval.

Legal Review Phase

Input

When a compliance ticket reaches the legal review phase, it
already contains:

• A source code scan report and confirmation that all the issues
identified in the scanning phase have been resolved.

• Copies of the license information attached to the ticket: Typically,
the compliance officer attaches the README, COPYING, and
AUTHORS files available in the source code packages to the
compliance ticket. Other than the license information, which for OSS

Open Source Compliance in the Enterprise

86

components are usually available in a COPYING or a LICENSE file,
you need to capture copyright and attribution notices as well. This
information will provide appropriate attributions in your
product documentation.

• Feedback from the compliance officer regarding the compliance
ticket (concerns, additional questions, etc.).

• Feedback from the engineering representative in the OSRB or from
the engineer (package owner) who follows/maintains this
package internally.

Output

The output of this phase is a legal opinion of compliance, and a decision
on the incoming and outgoing license(s) for the software component
in question. The incoming and outgoing licenses are in the plural form
because in some cases, a software component can include source code
available under different licenses.

Incoming and outgoing licenses

The incoming license is the license under which you received the software
package. The outgoing license is the license under which you are licensing
the software package. In some cases, when the incoming license is a
permissive license that allows relicensing (such as BSD), companies will
relicense that software under their own proprietary license. A more complex
example would be a software component that includes proprietary source
code, source code licensed under License-A, source code that is available
under License-B, and source code available under License-C. During legal
review, the legal counsel will need to decide on the incoming and
outgoing license(s):

Incoming licenses = Proprietary License + License A + License B + License C
Outgoing license(s) = ?

Open Source Compliance in the Enterprise

87

Architecture Review Phase

The goal of the architecture review is to analyze the interactions between
the open source code and third-party and proprietary code. The result of
the architecture review is an analysis of the licensing obligations that may
extend from the open source components to the proprietary components.
The internal package owner, the OSRB engineering representative, and the
Compliance Officer usually perform the architecture review. If they identify
a dependency resulting in a licensing conflict, the Compliance Officer
will issue a ticket to Engineering to resolve the dependency problem by
reworking the source code.

Input

Source code has been audited and all issues have been resolved.

Output

OSRB members perform an architecture review for the specific component,
and mark it as ready for the next step (i.e., Final Approval) if no issues
were uncovered.

Final Approval Phase

Input

The input to this phase is the complete compliance record of the software
component, which includes the following:

• A source code scan report generated by the scanning tool

• The list of discovered issues, information on how they were
resolved, and who verified that these issues were
successfully resolved

• Architectural diagrams and information on how this software
component interacts with other software components

Open Source Compliance in the Enterprise

88

• Legal opinion on compliance, and decision on incoming and
outgoing licenses

• Dynamic and static linkage analysis, if applicable in an embedded
environment (C/C++).

Output

The output of this phase is a decision to either approve or deny the usage
of the software component.

DETAILED USAGE PROCESS

Of course there are many possible circumstances that can affect
compliance procedures. Figure 17 (next page) provides a detailed process
that highlights several possible scenarios, and how to move from one step
to another in the compliance process. We then discuss eight possible
scenarios. These scenarios are not mutually exclusive and are not the only
possible scenarios; however, they are used for illustration and
discussion purposes.

Scenario 1: The source code scanned is 100% proprietary

Scenario 2: The source code scanned includes code with
incompatible licenses

Scenario 3: Issue with linkages identified during architectural review

Scenario 4: A source code package is not used anymore

Scenario 5: Due diligence identified IP that will be released to meet
license obligations

Scenario 6: Verification step has identified an issue that needs to
be resolved

Scenario 7: Source code is approved for use

Scenario 8: Source code is rejected

Open Source Compliance in the Enterprise

89

Figure 17. Specific compliance scenarios

Open Source Compliance in the Enterprise

90

Scenario 1: Source code is 100% proprietary

The scanned software component contains 100% proprietary code, and
no open source code is declared or identified. In this case, we assume
the fast track, and the compliance ticket for that specific component will
be forwarded for legal review. Legal counsel attaches a license to this
proprietary component, and forwards it to the compliance officer to perform
architectural and linkage analysis.

Scenario 2: Incompatible licenses

The scanned software component includes source code that originated
from multiple sources with incompatible licenses. Another example
would be a software component with a mix of proprietary source code
and source code licensed under the GPL. In this scenario, the scan
report will be attached to the compliance ticket and assigned to the
developers who internally own that software component, with a request to
rework the code by removing the GPL source code from the proprietary
software component. Once the developer reworks the code, the software
component will be scanned again to verify that the GPL code has been
removed before the ticket proceeds for legal review.

Scenario 3: Identified issue with linkages

In this scenario, the compliance ticket has passed legal review and is now
in the architectural and linkages review. The compliance officer discovers a
linkages issue. In this case, the compliance officer moves the compliance
ticket back into the resolution phase, assigning it to a developer to resolve
the linkage issue.

Scenario 4: Source code no longer used

In this scenario, Engineering decides that a software component is not
going to be included in the product while the software component is in
transit through the compliance process. As a result, its compliance ticket
is closed (rejected). The next time this component is going to be used, it
must re-enter the compliance process and progress as approved before it is

Open Source Compliance in the Enterprise

91

integrated in the product or service source code repository.

Scenario 5: IP at risk of requiring release

In this scenario, legal review uncovered that closely-held intellectual property
has been combined with an open source code package. Legal counsel will
flag this and reassign the compliance ticket to engineering to remove the
proprietary source code from the open source component. In the event
that engineering insists on keeping the proprietary source code in the open
source component, the OSEC will have to release the proprietary source
code under an open source license.

Scenario 6: Unresolved issue found

In every case, when an OSRB member discovers a compliance issue in the
software component, the component goes through the same life cycle:

• Engineering fixes the identified issue.

• Auditing team re-scans the software component and provides a
new scan report.

• Legal examines the new audit report.

• Compliance office ensures that there are no open issues in the
architecture and linkage analyses.

Scenario 7: Source code is approved

Once a software component has received the audit, legal, and compliance
approvals, it will be reviewed during an OSRB meeting. If nothing has
changed in its status — that is, it is still in use, is the same version, and has
the same usage model (Figure 18, next page) — the compliance officer will:

• Update the software inventory to reflect that the specific OSS
software component version x is approved for usage in product y,
version z.

Open Source Compliance in the Enterprise

92

• Issue a ticket to the documentation team to update end user notices
in the product documentation, to reflect that open source is being
used in the product or service.

• Trigger the distribution process before the product ships.

Figure 18. Steps accomplished after the OSRB approval

Scenario 8: Source code is rejected

In this scenario, the OSRB decides to reject usage of a specific software
component. There are several reasons that might lead to such a rejection:

• The software component is no longer used.

• There are linkage issues that cannot be resolved easily. The decision
is to stop development and design a better solution.

Open Source Compliance in the Enterprise

93

• There are license incompatibility issues that cannot be resolved
easily. The decision is stop development and design a
better solution.

• There are intellectual property issues preventing the use or release of
the specific component.

• Other reasons: each depends on the specifics of the software
component in question and its usage model in the final commercial
product or service.

INCREMENTAL COMPLIANCE PROCESS

Incremental compliance is the process by which compliance is maintained
when product features are added to a baseline version that has already
completed initial compliance. (Initial compliance, also called baseline
compliance, happens when development starts, and goes until the release
of the first version of the product.) Incremental compliance requires
a comparatively small effort in comparison to the efforts involved in
establishing baseline compliance.

Figure 19 illustrates product development and incremental compliance.

Figure 19. Incremental compliance

In this example, the compliance team identifies all open source included
in the software baseline (here called v 1.0), and drives all of the open

Open Source Compliance in the Enterprise

94

source components through the compliance end-to-end process. Once
the product ships, development begins on a new branch that includes
additional features and/or bug fixes — in this example, v 1.1.

Several challenges arise with incremental compliance. Specifically, you must
correctly identify the source code that changed between version 1.0 and
version 1.1, and verify compliance on the delta between the releases:

• New software components may have been introduced.

• Existing software components may have been retired.

• Existing software components may have been upgraded to a
newer version.

• The license on a software component may have changed
between versions.

• Existing software components may have code changes involving
bug fixes or changes to functionality and architecture.

The obvious question is “How can I keep track of all of these changes?”

The answer is simple: a bill of material difference tool (BOM diff tool), as
discussed in Chapter 7. Briefly, for the purpose of this discussion, the tool
provides you the delta between two BOMs for the same product or service.
Given the BOM for product v1.1 and the BOM for v1.0, we compute the
delta, and the output of the tool is the following:

• Names of new software components added in v1.1

• Names of updated software components

• Names of retired software components

Open Source Compliance in the Enterprise

95

Knowing this information, achieving incremental compliance becomes a
relatively easy task:

• Enter new software components into the compliance end-to-end
process.

• Compute a line-by-line diff of the source code in changed software
components, and decide if you want to scan the source code again
or rely on the previous scan.

• Update the software registry by removing the software components
that are not used anymore.

Figure 20 (next page) provides an overview of the incremental compliance
process. The BOM file for each product release is stored on the build
server. The BOM diff tool takes two BOM files as input, each corresponding
to a different product release, and computes the delta to produce a list
of changes as previously discussed. At this point, the compliance officer
will create new compliance tickets for all new software components in the
release, update compliance tickets where source code has changed and
possibly re-run them through the process, and finally update the software
registry to remove retired software components from the approved list.

OSRB USAGE FORM

Completing the OSRB usage form (also called a request form) is one of the
most important steps when bringing open source software into a company
(ingress), and should be taken very seriously. Developers fill out the online
form requesting approval to use a given open source component. The form
comprises several questions that will provide necessary information for the
OSRB, allowing it to approve or disapprove the usage of the proposed open
source component. Table 6 (page 97) highlights the information requested
in an OSRB usage form. Usually, these values are chosen from a pull-down
menu to make the data entry efficient.

Open Source Compliance in the Enterprise

96

Figure 20. Example of an incremental compliance process

Note on Downloaded Open Source Packages

It is vital to archive open source packages downloaded from the web in
their original form. These packages will be used in a later stage (prior to
distribution) to verify and track any changes introduced to the source code
by computing the difference between the original package and the modified
package. If a third-party software provider uses open source, the product
team integrating that code into the product must submit an OSRB usage
form describing the open source to be used. If the third-party software
provider provides only binaries, not source code, then the product team
and/or the software supplier manager who manages the relationship with
the third-party software provider must obtain a confirmation (for instance, a
scan report) that there is no open source in the provided software.

Open Source Compliance in the Enterprise

97

Table 6. Information requested as part of the OSRB usage form

Field Description

Submitter
Information

Company ID of employee submitting the form (facilitating
retrieval of employee name, phone, email, manager,
location, and team from a company directory)

OSS Code
Information

Package name and version

Software class: open source, internally developed, third-
party shrink-wrap

Website URL

Description

License name and version

License website URL

Software category: OS/kernel, driver, middleware, library,
utility, other (explain), etc.

Benefits of using the OSS component

Alternatives to using the
component/package

Consequences of not using the software

Location of the software in the SCMS

Use Case Internal (tools, IT, etc.)

Distributed as part of a product

Enabling an outward-facing service

Modification Modified (Y/N)?

Includes company IP?

Exposes IP?

Open Source Compliance in the Enterprise

98

Note on Architecture Diagram

The architectural diagram illustrates the interactions between the various
software components in an example platform. Figure 21 provides an
example architectural diagram that shows:

• Module dependencies

• Proprietary components

• Open source components (modified versus as-is)

• Dynamic versus static linking

• Kernel space versus user space

• Shared header files

• Communication protocols

• Other open source components that the software component in
question interacts with or depends on, especially if it is governed by
a different open source license

Figure 21. Template for architectural diagram (applies to an embedded environment that

relies on C or C++)

Open Source Compliance in the Enterprise

99

Rules Governing the OSRB Usage Form

There are several rules governing the OSRB usage form. Here are a few.

• The form applies only to the usage of open source in a specific
product and in a specific context. It is not a general approval of the
open source component for all use cases in all products.

• The form is the basis of audit activity and provides information
the OSRB needs to verify if the implementation is consistent with
the usage plan expressed in the form, and with the audit and
architectural review results.

• The form must be updated and resubmitted whenever the usage
plans for that specific open source component changes.

• The OSRB must approve the form before engineering integrates the
open source into the product build.

• The OSEC must approve the usage of any open source package
where licensing terms require granting a patent license or patent
non-assertion.

AUDITING

Good audit practices ensure a thorough understanding of the provenance
of all software that will be deployed as part of a product or service. With
this understanding comes the ability for your organization to meet its open
source software license obligations. The auditing policy is usually simple
and straightforward: All source code included in the portfolio/stack must
be audited and have an audit report attached to its compliance ticket. The
audit process consists of the workflow that requests follow after engineering
has submitted an OSRB usage form for a specific software component.

Open Source Compliance in the Enterprise

100

The audit process consists of the following phases (Figure 22):

Receive the OSRB usage form, which includes the location of the source
code to audit.

• Perform a scan of the source code.

• Perform analysis of components flagged by the scanning tool.

• Produce final auditing report.

Figure 22: Basic audit process

SOURCE CODE DISTRIBUTION

The goals of the source code distribution process and policy are to
ensure that:

• Customers who buy the product or use the service containing open
source software are informed of their rights to receive the source
code when applicable

• The source code distributed is the correct version, corresponds
to the binary version included in the product transmission of the
software to the distribution site, and is labeled appropriately

Distribution Incentives

There are three major business incentives to distribute open source code:
Meeting license obligations, contributing enhancements to an open source
project, and creating and contributing code to a new open source project.

Open Source Compliance in the Enterprise

101

Meeting License Obligations

In this instance, your organization has incorporated open source into
a product or service, and due to the open source component license,
you have the obligation to make source code available, including any
modifications to it. This is informally considered a one-way distribution,
versus a two-way that involves full community interaction.

Contributing modifications to an existing open source project

In some cases, the open source license does not include an obligation
to make your modifications available for license compliance purposes.
However, you may consider releasing your modifications and possibly
upstreaming them to reduce your technical debt, or, in other words, the
cost of maintaining those modifications.

Creating a new open source project

Organizations may have a business need to create a new open source
project and contribute source code to it. This case is different from
contributing source code (in the form of bug fixes or new feature
implementation) to an existing open source project.

Distribution Policy and Process

The goal of a distribution policy is to govern the process of supplying source
project code and to provide guidelines on the various logistical aspects of
meeting open source license obligations regarding the availability of open
source code. The distribution policy applies to any software package where
the license requires redistributing source code, and it covers the publication
process, publication methods, modes, and checklists.

Prior to triggering the process, you need to decide on the method and
mode of providing source. Subsequently, the process begins with preparing
source code for external distribution, following a pre- distribution checklist,
ensuring source code package availability, and then completing the post-
distribution checklist.

Open Source Compliance in the Enterprise

102

Figure 23 illustrates a sample distribution process. It includes:

• Deciding on the source code supply method

• Deciding on a distribution mode

• Preparing the source code packages for external distribution

• Completing a pre-distribution checklist to ensure that all prior
steps have been successfully completed and that the source code
packages are ready for external distribution

• Executing the distribution

• Completing a post-distribution checklist to capture any possible
errors that took place as part of the distribution process

Figure 23. Sample publication process

Open Source Compliance in the Enterprise

103

Distribution Methods and Modes

There are three main distribution methods for making source code
packages available.

Instant Compliance Method

Following this distribution method, you provide the code when or shortly
after your product or software stack ships, and make it made available
to anyone who wishes to get it, typically via a website download. This is
usually the preferred method of distribution for developers (and compliance
enforcers), as it gives them direct access to the source code without having
to pass the eligibility requirement (i.e., they don’t need to buy the product
to be eligible to receive the source code). In some cases, the instant
compliance method can be accomplished by including the source code
packages on the product/device in a media directory.

There are two drawbacks to this method of distribution. Firstly, it requires a
lot of effort to package all source code and make it available on the website
by the date the product ships, at a time when all hands are on deck getting
the product out the door. Secondly, you will be building up an expectation
that future source code distributions will use this method as well. This is a
very high expectation to meet every single time.

Online Supply Method

Following this distribution method, you provide exclusive access to your
customers only, as they are the only entities eligible to receive the source
code. This method is best managed via a secure website that requires a
certain authentication on the part of the client to access and download the
source code packages.

On-demand Compliance

This distribution method is a variation of the online supply method in
which you rely on the written offer (in the case of the GPL/LGPL family of
licenses) to communicate to your clients how they can request or access
the source code. Some organizations prefer to have a written request, sent

Open Source Compliance in the Enterprise

104

to a corporate email address or a postal address (specified in the written
offer), the result of which is that the client receives a copy of the source
code, after the verification of their eligibility. This compliance method often
gives the organization additional buffer time to finish packaging the source
code after the product has shipped. However, generally speaking, it is not
regarded as a preferred method of distribution, due to the overhead it poses
in verifying the eligibility of the people asking to access the source code and
the resources required to fulfill the requests. In addition, with the specific
cases of the GPL/LGPL family of licenses, the written offer to access the
source code must be valid for three years. Therefore, you will need to
administer the distribution of the code for at least three years from the date
you have last shipped your product. If you opt for providing the source code
on a CD-ROM, this will introduce some additional cost to you and additional
verification steps to ensure the correctness of the process of burning the
CD-ROM containing the source code packages.

Distribution Checklists

There are many checkpoints for validating the open source package before
it makes its way to the website for customer and/or public consumption.
And additional validation is required after source code becomes publicly
available. Below we outline the pre- and post- distribution process.

Pre-Conditions for Distribution

The following is a list of conditions that should be met before source code
packages are ready for distribution (aka distribution hygiene):

• The open source package has been approved by OSRB for usage
that corresponds to what was declared in the usage form.

• The product containing the open source packages is ready to ship
or has shipped already.

Open Source Compliance in the Enterprise

105

• If you are making GPL/LGPL licensed code available, ensure you are
providing and documenting the modifications you have introduced.

• You’ve performed a linguistic review. Although this is not
compliance-related, there have been issues in the past related to
future product code-names used, obscene or vulgar language, and
references to individuals, email addresses, and/or internal URLs left
in the code.

Pre-Distribution Checklist

The following is a sample checklist to follow before publishing or distributing
source code:

• Verify that the modifications that were introduced to the open
source package are documented and included in the open source
release notes as part of the change log. Ensure that each modified
source code file contains an additional entry for a copyright notice,
disclaimer, and a generic “change log” entry.

• Confirm that all contents of the source code package have been
reviewed by Engineering and confirmed by OSRB.

• Ensure that the open source package compiles on a non-corporate
machine. It is often the case when compiling packages on a
company-configured machine that environment and compiler
settings are all preconfigured and set. However, when you try to
compile the package on another system, the compilation settings,
makefile options, include paths, etc. may break. The goal with this
step is to ensure that the open source package you are about to
distribute compiles on a vanilla, end-user system.

• Update the product manual to:

• Mention that the product includes open source software.

• Include a listing of all licenses that correspond to the different
open source software included in the product.

Open Source Compliance in the Enterprise

106

• Offer proper copyright and attribution notices.

• Indicate how to access the code of the open source package
(written offer) either through a web page download or by
contacting your company via email or postal mail at a specified
address provided in the product manual.

• Verify that the written offer is sufficient to cover all parts of the
source code that require such an offer (principally, code licensed
under any of the GPL/LGPL family of licenses).

• Perform a linguistic review to ensure that there are no inappropriate
comments in the source code. Some companies forget to go
through a linguistic review and when/if their product is hacked, they
face embarrassment from exposure of inappropriate comments left
in the source code. Another important reason to perform a linguistic
review is to ensure that the source code and comments do not
make reference to future product code names or capabilities.

• Ensure that existing license, copyright, and attribution notices are
not disturbed.

• Verify that the source code to be distributed corresponds to the
binary that goes with the product, that the source code builds
into the same library distributed with the product, and that build
instructions are included in the source distribution (derived binaries
are usually identical except for time/date stamp).

• Verify that the package adheres to the linkage relationships and
interactions defined in the OSRB usage form. For instance, if the
developer declared that they will dynamically link that component
to an LGPL licensed library, then we need to verify they’ve done so,
and have not used a static linkage method instead. This is verified
by using the linkage dependency-mapping tool.

Open Source Compliance in the Enterprise

107

• Ensure inclusion of a copy of the license text, if not already present,
in a LICENSE file in the source code root folder of the open
source package.

• If the source code package requires special build tools or
environment, then include the details in a README file or similar.

Post-Publication Checklist

The following is a sample checklist to go through after publishing source
code, to validate the source code packages being made available:

• Source code packages have been successfully uploaded to the
website and can be downloaded on an external computer.

• Source code packages can be uncompressed on an external
computer without errors.

• Source code packages can be compiled and built on an external
computer without errors.

Written Offer

Below is an example of a written offer to provide the source code:

To obtain a copy of the source code being
made publicly available by FooBar, Inc.
(“FooBar”) related to software used in this
FooBar product (“Product”), you should
send your request in writing to:

FooBar Inc.

Attention: Open Source Compliance
Inquiries

Open Source Compliance in the Enterprise

108

Street Address
City, State, Postal Code
Country

FooBar makes every possible effort to make
the source code publicly available at http://
opensource.foobar.com (“Website”) within
reasonable business delays. Before sending
your written request, please check the
Website, as the source code may already
be published there.

Alternatively, if you prefer receiving requests via email and not via postal
mail, the wording of the written offer would change slightly to:

To obtain a copy of the source code
being made publicly available by FooBar,
Inc. (“FooBar”) related to software used
in this FooBar product (“Product”), you
should send your request in writing to
opensourcecompliance@foobar.com.

FooBar makes every possible effort to make
the source code publicly available at http://
opensource.foobar.com (“Website”) within
reasonable business delays. Before sending
your written request, please check the
Website, as the source code may already
be published there.

Open Source Compliance in the Enterprise

109

Chapter 6
RECOMMENDED PRACTICES FOR
COMPLIANCE PROCESS MANAGEMENT

This chapter highlights some of the recommended practices and various
considerations when integrating open source in commercial products. It is
divided into three parts:

• Recommended practices that map to the various steps within an
open source compliance management end-to-end process.

• Compliance considerations in relation to source code modifications,
notices, distribution, software design, usage, linkages, and
code mixing.

• Recommended practices related to the various building blocks in an
open source compliance program.

COMPLIANCE PROCESS

As a refresher, the compliance management process includes the various
steps a software component goes through before it is approved for
inclusion in a product software stack. The process starts by identifying the
various software components integrated into the product’s build system,
and ends by compiling a list of resulting license obligations.

The following sections provide recommended practices for processing
compliance requests. The recommended practices map directly to the
steps illustrated in the compliance process shown in Figure 24 (next page).

Identification Phase
In the identification phase of a compliance process, organizations identify
all of the components or elements entering the build system, origin, and
license information. There are three main sources for incoming source code:

Open Source Compliance in the Enterprise

110

• Proprietary software created by internal developers, which may
include snippets of open source or which integrates open source at
the component level, with dependencies on or links to open
source code

• Third-party software developed by independent providers or
consultants and made available under a commercial or open
source license. This software category may include snippets or
dependencies as above.

• Open source software developed by members of an open
source project

Figure 24. Compliance end-to-end management process

It is recommended to identify all the incoming software components and run
them through the compliance process.

Open Source Compliance in the Enterprise

111

Source Code Auditing

There are three core recommended practices for source code auditing or
scanning:

Scan all source code

Scan every bit of source code incorporated into products and services,
because development teams may have introduced open source into
proprietary or third-party source code. Furthermore, development teams
may have made modifications to open source components, triggering
the need for additional due diligence and potential additional obligations.
Therefore, it is critical to audit and identify all source code included in a
product.

Scan newer versions of previously approved packages

Sometimes a previously approved package is either modified and
used again (in the same or in a different context) or used as-is or with
modifications in a different product or service, or a new version is
downloaded and applied in the software stack. Since compliance is verified
on a product-by-product, service-by-service basis, approving for use in one
case does not necessarily serve for all cases.

As a rule, each time developers modify a previously approved component
or plan to use a previously approved component in a different context,
component source code should be rescanned, and the component should
pass the approval process again.

Ensure review and approval of each new version of open source

components

License changes can occur between version upgrades. When developers
upgrade versions of open source packages, make sure that licenses of new
versions are the same as those employed with older versions.

There is an open source adage that goes “release early and release often.”

Open Source Compliance in the Enterprise

112

The open source development model encourages frequent releases,
starting on project day one, to give users opportunities to experiment and
report bugs. The goal is to make quality assurance activities a regular part
of the development process.

“Scan early and often” follows the same spirit. Scanning source code early
in the development process and continuing to do so regularly ensures
that compliance efforts are not lagging behind the development efforts.
Organizations should also create a list of conditions that define when a new
scan is required, to make the process more efficient.

The “scan early and often” approach has several advantages:

• It aids in the discovery of compliance issue very early in the process.

• It accelerates providing solutions to discovered problems within
acceptable timeframes without posing a serious threat to the
delivery timeline.

• It improves the efficiency of processing incremental, scans since it
reduces the delta of source code that needs to be scanned from
previous source code scans.

Resolving Issues

When source code is scanned and compliance issues are discovered and
flagged, there are a number of ways to resolve issues:

• When in doubt with the scan results, discuss with Engineering
(interview developers responsible for specific software components
in question).

• Inspect and resolve each file or snippet flagged by the scanning tool;
matching source code may come from sources that surprise you.

• Identify modifications to open source. Ideally, you should not rely
on engineers to remember if they made code changes (let alone

Open Source Compliance in the Enterprise

113

document them). You should rely on your build tools (SCM, build
automation, etc.) to identify code changes, who made them,
and when.

• If, for instance, the source code scanning tool identifies the use
of unauthorized GPL licensed source code (a snippet) within a
proprietary component, this will be reported to Engineering with
a request for correction. It is highly recommended to re-scan the
source code after Engineering has resolved the issue, to confirm
removal of the problem source code and its replacement with
appropriate and compatible code.

• In preparation for the legal review, it is best to provide attorneys with
all discovered licensing information for specific components:

• The source code audit report generated by the scanning tool

• The COPYING, README, or LICENSE files for open
source components

• The licensing agreement for software components received from
a third-party software provider

Reviews

There are different types of reviews that occur as part of a compliance
process. In this section, we discuss architecture review and linkage
analysis review.

The architecture review is an analysis of the interaction among open
source, proprietary, and third-party software components. Companies often
conduct architecture reviews with the architect responsible for the product
in question, plus developers responsible for the various key
software components.

Open Source Compliance in the Enterprise

114

The goal of this review is to identify:

• Components that are open source (used as-is or modified)

• Proprietary components

• Third-party components under a commercial license

• Component dependencies

• Communication protocols among components and subsystems

• Dynamic versus static linking (discussed in the following section)

• Components deployed in kernel space (drivers, etc.) versus user
space (libraries, middleware, applications)

• Components that use shared header files

• Other open source that the specific software component interacts
with or depends on, especially if it is governed by a different open
source license

The result of the architecture review is an analysis of the licensing
obligations that may extend from open source to proprietary or third-party
components.

Approvals

As part of the approval step in the compliance process, there are two main
recommended practices:

• Verify that all subtasks related to the compliance ticket have been
completed and closed before approving the compliance ticket. It’s
easy to forget subtasks or pending subissues, but doing so may
lead to prematurely closing a compliance ticket even though open
issues remain.

• Record a summary of discussions that lead to approval or denial.
Such documentation can prove very useful when attempting
to determine on which basis approval was provided for a given
component and how issues were resolved.

Open Source Compliance in the Enterprise

115

Notices

Organizations using open source in products and services need to:

• Acknowledge the use of open source by providing full copyright and
attribution notices.

• Inform end users how to obtain a copy of the open source code
(when applicable, for example in the case of GPL and LGPL
licensed source code).

• Reproduce the entire text of the license agreements for the open
source code included in the product.

Some recommended practices in this area include:

• Collect attribution and license notices incrementally, as open source
is approved for inclusion. Following this method, the required
notices file will always be up to date and will include lists of all open
source, license information, copyright, and attributions notices.

• Use clear language in the written offer and be inclusive of all open
source included in the product.

• Ensure that the end users of the product know how to locate
this information, whether on the product itself, in the product
documentation (user manual or CD-ROM), and/or on a website.

Verifications

It is very helpful and efficient to develop, maintain, and evolve checklists
that cover the verification steps that the compliance team follows, both to
ensure consistency and to ensure that no verification steps are overlooked.
Examples of pre-distribution verifications include:

Open Source Compliance in the Enterprise

116

• Open source packages destined for distribution have been identified
and approved

• Inappropriate comments have been removed from the source
code packages (this is not strictly a compliance issue; however,
comments may reveal a compliance issue that is not as visible)

• Source code packages made available (including modifications)
match the binary(ies) shipping in the product or software stack

• Appropriate notices have been included in the product
documentation, in addition to the availability of a written offer to
inform end users of their right to request source code for identified
open source (when applicable)

Once open source packages are uploaded to the distribution website (and/
or stored on equivalent media), your work is not complete. You still need to
verify that:

• Packages have been uploaded correctly

• Packages can be downloaded and uncompressed on an external
computer without error

• Included packages compile/build properly

• Developers did not leave comments about future products,
product code names, mention of competitors, or any inappropriate
comments

TOOLS AND AUTOMATION

Tools are an essential element in a compliance program in that they can
help organizations perform compliance activities efficiently and accurately.
Many tools can prove very useful in an open source compliance program:

Open Source Compliance in the Enterprise

117

• Source code scanning and license identification tools

• Project management tools

• Bill of material difference tools

• Linkage analysis tools

In the following subsections we provide basic information about such tools
and how their use can contribute to compliance activities. In the market,
there are multiple commercial/proprietary and open source tools that
provide the various functionalities described below.

Source Code Identification Tools

Source code and license identification tools provide recognition and analysis
capabilities to assist users in identifying the origin of source code and
licenses associated with open source software components.

• Antelink Reporter: http://www.antelink.com/

• Black Duck Protex: https://www.blackducksoftware.com/products/
protex

• The Black Duck Hub: https://www.blackducksoftware.com/
products/hub

• FOSSology: http://www.fossology.org/projects/fossology

• nexB DejaCode: http://www.nexb.com/products.html

• Open Logic Exchange: http://www.openlogic.com/products-
services/openlogic-exchange

• Palamida Enterprise: http://www.palamida.com/products/enterprise

• Protecode Enterprise: http://www.protecode.com/our-products/

• WhiteSource: http://www.whitesourcesoftware.com

Open Source Compliance in the Enterprise

118

Project Management Tools

A project management tool is essential to managing and tracking
compliance activities. Some companies use bug tracking tools (see list
below) already in place with a customized compliance workflow; other
companies rely on specific project management tools or even in-house
solutions. Whatever your preference, tools should reflect the workflow of
compliance processes, facilitating moving compliance tickets from one
phase of the process to another, providing task and resource management,
time tracking, email notifications, project statistics, and
reporting capabilities.

Example bug-tracking tools commonly employed for compliance:

• Bugzilla: https://www.bugzilla.org/

• IBM Rationale ClearQuest: http://www.ibm.com/software/products/
en/clearquest/

• JIRA: https://www.atlassian.com/software/jira

• Redmine: http://www.redmine.org/

• Bugzilla: https://www.bugzilla.org/

Software Bill of Material (BOM) Difference Tools

The goal of a Software BOM difference tool is to compute the difference
between two BOMs and produce a list of changes. Such a tool enables
efficient incremental compliance when facing newer versions of an existing
base code (for instance, going from release 1.1 to 1.2). The inputs to a
BOM difference tool are two BOM files that represent the list of components
available on two different versions of a product or service code base.
The output of the BOM difference checker documents the list of new
components, retired components, and modified components.

BOM management tools are plentiful in the world of physical manufacturing,
but less so for managing use of open source software. In this author’s
experience, BOM difference tools that support open source management

Open Source Compliance in the Enterprise

119

processes are usually home-grown and/or built as mash-ups of existing
tools and capabilities. Depending on the form and format of the bill of
materials, it is possible to use command-line diff tools, productivity tools
(spreadsheets, etc.), directory comparison tools, and reports from build
and continuous integration tools, plus scripting “glue,” to create web-based
BOM version comparisons. Figure 25, created for illustration purposes,
shows the sample output of a homegrown BOM difference tool.

Figure 25. Example BOM difference report

Linkage Analysis Tool

The goal of the dependency checker is to flag problematic code
combinations at the dynamic and static link level, specific to C and C++
programming languages. The tool identifies a linkage conflict between the
license of the binaries and the license of the libraries it links to, based on
predefined license policies that the user of the tool has already defined.

There are many tools that can be used together to fulfill the function of
dependency checking, including the Source Code Identification Tools listed
above, many static analysis tools, reporting tools from build and integration
suites, and many home-grown code analysis tools. The main requirements
for dependency mapping are the abilities to:

• Identify linking among binaries and libraries

• Identify licenses for binaries and libraries

Open Source Compliance in the Enterprise

120

• Connect with license scanning tools or consume the output thereof

• Configure to match company policy preferences to flag linkages that
violate those policies (e.g., linking with GPL-licensed code)

In this author’s experience, Dependency Mapping tools, much like BOM
tools, are usually home-grown and/or built as mash-ups of existing tools
and capabilities.

One off-the-shelf open source tool of this type is The Linux Foundation
Dep-Checker (http://git.linuxfoundation.org/dep-checker.git/).

Open Source Compliance in the Enterprise

121

CHAPTER 7
MANAGING COMPLIANCE INQUIRIES

This chapter presents guidelines for handling compliance inquires. These
guidelines aim to maintain a positive and collaborative attitude with
requesters while investigating allegations and ensuring proper actions when
violations actually occur.

Several organizations have received negative publicity and/or have been
subject to legal action after ignoring requests to provide compliance
information; did not know how to handle compliance inquires; lacked or
had a poor compliance program; or simply refused to cooperate, thinking
(incorrectly) that license terms were not enforceable. Today, best practices
inform us that none of these approaches are beneficial to any party
involved. Therefore, companies should not ignore compliance inquiries —
rather, they should acknowledge receipt of inquiries, inform inquiring parties
of pending response, and provide an estimated date for follow-up.

Compliance inquiries can include requests for:

• Access to source code in accordance with a written offer to provide
source code licensed under GPL, LGPL, or other licenses

• Access to source code for an undisclosed component that was
discovered in a product

• Verification of whether a specific open source component is used in
a product or service

• Update to an out-of-date attribution or copyright notice

• Providing files missing from open source packages made available
as part of license obligations

Open Source Compliance in the Enterprise

122

Companies usually receive compliance inquiries through a dedicated email
address that they advertise in their written offer or as part of their open
source notices.

RESPONDING TO COMPLIANCE INQUIRIES

This section introduces a method for responding to compliance inquiries.
Figure 26 presents a sample inquiry response process that illustrates the
steps a compliance inquiry goes through, from receiving the inquiry until
its closure.

Figure 26. Process of responding to compliance inquiries

Acknowledge

Once you receive the compliance inquiry, you should respond immediately,
confirming receipt and committing to investigate by a specific date.

Open Source Compliance in the Enterprise

123

It is important to understand the inquirer’s identity and motive and to
verify whether the complaint is justifiable, accurate, and current. Realize
that inquirers often don’t fully understand licenses, leading to mistaken
assumptions and submissions. If an inquiry is missing information, request
additional clarification, such as:

• The name of the affected product(s) or service(s) or the exact code
of concern

• The reason why a violation is believed to exist

• The name of the project code and license that may have
been violated

• A link to the project site

Inform

It is recommended to maintain an open a dialog with inquirers. Always
highlight your open source compliance practices and demonstrate
historical good faith efforts toward compliance. Inform inquirers about
your compliance program and practices, and assure them that you will
investigate their question. It is also advisable to send updates of your
internal investigation as they become available.

Investigate

In this step, investigating reported allegations, you should refer to the
compliance record for the component in question, review it, and verify if and
how the compliance record compares with the inquiry.

Report

After concluding the internal investigation within an acceptable period of
time, and creating an internal record of the findings, you need to inform the
inquirer of the results.

Open Source Compliance in the Enterprise

124

Close Inquiry

If the compliance inquiry was a false alarm, you can close the compliance
inquiry ticket without any further action (other than informing the inquirer of
that resolution).

Rectify

If the investigation uncovers an actual compliance issue, you should
report back to the inquirer confirming that fact, with assurances that your
organization will take all the necessary steps to bring your product or
service back to compliance, specifying a date by which you expect to
complete this task. It is your responsibility to resolve the issue with the
inquirer, while being collaborative and showing good will. You need to
show that you understand the obligations under the applicable license,
communicate how — and when — you will meet the obligations.

Once you fix the problem, you should notify the inquirer immediately, and
invite them to verify the solution.

Improve

If there was a compliance issue, you should call for an OSRB meeting to
discuss the case, learn how this non-compliance occurred, and improve
existing process and practices to ensure that such errors do not
happen again.

General Considerations

• Treat all inquiries as formal inquiries, and work under the assumption
that any information you disclose as part of the interactions with the
inquirer can become public.

• Consider how your existing open source compliance efforts would
measure up in an enforcement action, and work to improve
your processes.

Open Source Compliance in the Enterprise

125

CHAPTER 8
OTHER COMPLIANCE-RELATED PRACTICES

This chapter highlights compliance best practices and various
considerations outside of the actual compliance process.

EMPLOYEE APPRAISAL

There are four challenges that all companies face with regard to engineering
and compliance enforcement:

• Ensuring engineers consistently fill out request forms for each open
source component they want to use

• Requiring engineers to respond in a timely fashion to
compliance tickets

• Verifying engineers are following the guidelines set by the OSRB

• Mandating engineers to take your internal open source
compliance training

A practice that has proved to be effective in helping companies face these
four challenges is to include open source and compliance metrics as part
of employee performance reviews. As a result, part of the developers’
yearly bonus will depend on the extent to which they have followed the
compliance policies and procedures. Reviews may evaluate performance on
whether employees:

Open Source Compliance in the Enterprise

126

• Fill out OSRB forms for each open source component they use

• Respond to compliance tickets without significant delays

• Complete the open source and compliance training within a time
limit set by the manager

• Use open source within the guidelines that the OSRB has set and
do not cause a compliance violation

In turn, to use compliance as a factor in employee performance reviews, the
OSRB must track these issues for each developer:

• Components that were included in the software BOM that don’t
have a corresponding approval

• Response time to compliance tickets

• Course completion

• Compliance violations reported to the executive team

WEB PORTALS

Some companies maintain both an internal and an external open source
web portal. The internal portal hosts compliance policies, guidelines, training
material, announcements, and access to related mailing lists. The external
portal offers a consistent means of posting source code of open source
packages they use, in fulfillment of license obligations.

MESSAGING

The single most important recommendation with respect to messaging is
to be clear and consistent, whether internally — explaining company goals
and concerns around open source, or externally — facing community
participants. Having a community-facing site is particularly important when
responding to compliance inquiries.

Open Source Compliance in the Enterprise

127

TRAINING

The goal of open source and compliance training is to raise awareness of
open source policies and strategies and to build a common understanding
of the issues and facts of open source licensing. Training may also cover
the business and legal risks of incorporating open source in products. It
also serves as a way to publicize and promote an organization’s compliance
policies and processes, and to promote a culture of compliance.

There are formal and informal training methods. Formal methods include
instructor-led training courses where employees have to pass a knowledge
exam to pass the course. Informal methods include webinars, brown bag
seminars, and presentations to new hires as part of the new employee
orientation session.

Informal Training

Brown Bag Seminars

Brown bag seminars are usually presentations offered during lunchtime by
either a company employee (in-house legal counsel, open source expert,
compliance officer, etc.) or an invited speaker (most commonly a high profile
open source developer). The goal of these seminars is to present and elicit
discussions about the various aspects of incorporating open source in
products or software stacks. These sessions can also include discussions
of the company’s compliance program, policies, and processes.

New Employee Orientation

In some instances, the Compliance Officer presents on organization
compliance efforts, rules, policies, and processes to all new employees
as part of the new employee orientation session. On their first day, new
employees would receive a 30-minute training on open source and
compliance. As a result, the new employees will have all the necessary
information they need, such as who are the internal subject matter experts,
what intranet resources exist, and how to sign up for open source and
compliance training.

Open Source Compliance in the Enterprise

128

Formal Training

Depending on the size of the organization and the extent to which open
source is used in commercial offerings, the organization can mandate that
employees working with open source take formal instructor-led courses and
be tested on their subject-matter proficiency.

SOURCE CODE MODIFICATION CONSIDERATIONS

It is strongly recommended to publish an internal-only set of guidelines
in plain, non-legalistic language that establishes basic rules for modifying
existing source code. For example:

• Source code modifications that will remain proprietary must not
be made within an open source package, especially one that has
derivative work obligations (e.g., GPL or LGPL).

• Proprietary source code must not link to an open source library that
has a derivative work obligation. Companies usually request formal
OSRB approval for such action.

• Ensure that any modifications to source code are documented in
compliance with the open source license prior to distribution.

• All modifications to open source code modules shall be captured in
the revision history of the module (change log file).

NOTICES CONSIDERATIONS

One of the key obligations when using open source is to ensure clear and
accurate documentation of copyright, attribution, and license information,
and the availability of a written offer (for GPL/LGPL licensed source code).
The sum of all of these documentation obligations is often referred to as
open source notices.

Open Source Compliance in the Enterprise

129

Companies using open source in their offerings must acknowledge the use
of open source by providing full copyright attribution, and, in most cases,
reproducing the entire text of the licenses of the open source software
included in the product or service. Therefore, companies must fulfill
documentation obligations by including copyright, attribution, and license
notices text in the documentation of every product they ship and service
they provide.

There are two primary options for fulfilling documentation obligations
requirements:

• Display the open source notices on the product itself. This is a
viable option if the product has a user interface that allows the user
to interact with it and pull up or display licensing information. An
example of this option is a cell phone or a tablet.

• Include the open source notices in the product manual or any kind
of documentation accompanying the product.

Some companies opt for both options when possible, in addition to
maintaining these notices on a given website (optional, but also often
adopted, and it’s low maintenance — basically just hosting the notices file
on the website). The important takeaway from the notices considerations
is to ensure that all open source notice requirements are satisfied prior to a
product distribution or service launch.

DISTRIBUTION CONSIDERATIONS

Generally speaking, companies want to ensure that any source code
subject to open source distribution obligations is compliance-ready prior to
product shipment. By thoroughly integrating compliance practices into the
development cycle, distribution considerations can be greatly simplified
and streamlined.

Open Source Compliance in the Enterprise

130

USAGE CONSIDERATIONS

The following sections address considerations and caveats for using open
source in a fully compliant manner.

Clean Bill of Materials (BOM)

Ensure that any inbound software does not contain undeclared open
source. Always audit source code upon receipt from providers; alternatively,
make it a company policy that software providers must deliver source code
audit reports for code they supply.

OSRB Form for Each Open Source Component

Fill out an OSRB usage request form for each open source component in
use. Avoid using any open source without explicit OSRB approval.

Understand the Risks During Mergers and Acquisitions (M&A)

Understand the open source code in use and its implications as part of the
due diligence performed prior to any corporate transaction.

Retired Open Source Packages

If an approved open source package is no longer in use, engineers must
inform the OSRB to update the open source inventory; alternatively, the
OSRB will discover that the package is not used anymore when they run
the BOM diff tool.

Major Source Code Changes

If an approved package went through a major change, inform the OSRB
to re-scan the source code; alternatively, the OSRB will discover that the
package has been modified when they run the BOM diff tool. A major
change in the design or implementation often impacts architecture, APIs,
and use cases, and in some cases may have an impact on the
compliance aspect.

Open Source Compliance in the Enterprise

131

Reference Original Source Code

Document the URL from which you downloaded the open source package
in addition to saving an original copy of the downloaded package.

Upgrading to Newer Versions of open source

Ensure that each new version of the same open source component is
reviewed and approved. When you upgrade the version of an open source
package, make sure that the license of the new version is unchanged from
the prior version, as license changes can occur between version upgrades.
If the license changed, contact the OSRB to ensure that compliance
records are updated and that the new license does not create a conflict.

Compliance Verification Golden Rule

Compliance is verified on a product-by-product, service-by-service basis:
Just because an open source package is approved for use in one context
does not necessarily mean it will be approved for use in a second one.

Copy/Paste

Avoid using source code snippets, and avoid copying/pasting open source
code into proprietary or third-party source code (or vice versa) without prior
documented OSRB approval. Such actions have serious implication
on compliance.

Mixing Source Code with Different Licenses

Avoid mixing different open source licenses in a derivative work, as many
open source licenses are incompatible with one another. It is highly
recommended to seek legal support from your Counsel on this topic.

Source Code Comments

Do not leave inappropriate comments in the source code (private
comments, product code names, mention of competitors, etc.).

Open Source Compliance in the Enterprise

132

Existing Licensing Information

Do not remove or in any way disturb existing copyrights or other licensing
information from any open source components that you use. All copyright
and licensing information must remain intact in all open source components,
unless you are completely certain the license allows it to be changed.

ATTRIBUTION CONSIDERATIONS

Companies that include open source in a product need to provide required
attribution to the end user. This section provides guidelines of how to fulfill
open source attribution obligations.

Attribution Types

Open source attribution requirements differ from license to license, but can
generally be grouped into four categories:

Full License Text

A verbatim copy of the full license text is required for almost all open
source licenses.

Copyright Notices

A verbatim copy of the copyright notices is required for many open
source licenses.

Acknowledgments Notices

Some open source licenses explicitly require author attribution. In most
cases, open source projects maintain a file called AUTHORS that includes
the list of contributors; you can use this information as part of the
attribution notice.

Open Source Compliance in the Enterprise

133

Information on Obtaining the Source Code

Most licenses with a source code redistribution obligation require that either
the source code accompany the product or that the user receive a written
offer with details on how to obtain the source code. The GPL and LGPL are
examples of licenses in this category.

Presentation of Attributions

For each product or service containing or using open source, the
attributions must be included in published user documentation (such as the
product manual) distributed in printed or electronic form, such as a CD or a
download from a website. If products or services possess a graphical user
interface or a command line administrative interface, you can also provide
the option to display the attributions via that UI. For product updates such
as over-the-air (OTA) updates for cell phones, the attributions must also be
revised when the product update includes new or updated open
source components.

SPECIFIC LICENSE OBLIGATIONS

“Must include a copy of the license in documentation available to the
end user”

The license of the open source component in question must be included in
the user documentation for all products using this open source.

RECOMMENDATIONS

• In some instances, such as with mobile phones or tablets,
manufacturers are able to provide the notices on the actual device
via a web browser or a PDF viewer (i.e., licensing text is available on
the device either in HTML or PDF format).

• For products with a user accessible file system, it is recommended
that the license is included in the file system with a filename
LICENSE to make it stand out and to be similar to the open source
license filename.

Open Source Compliance in the Enterprise

134

• For product updates, license information must also be updated.
For instance, when a new software release becomes available, the
updated release must include an update license information file to
reflect any open source changes introduced in the new release.
Changes may include:

• New open source used

• Deprecated/removed open source

• Open source upgraded to a new version, which may require
updating the attribution/copyright notices, and, in some rare
cases, updating the license

“Must include copyright notices in documentation available to the
end user”

The license of the open source component in question may require
including copyright notices in the product document available to the
end user.

RECOMMENDATIONS

• For all products, copyright information must be included in printed
documentation (such as a user manual).

• If the use case includes a graphical user interface, the end user
should be able to view the copyright information from an ABOUT or
a LICENSE screen.

• If the product has a user-accessible file system, the copyright
information should be included in the file system in a file containing,
for instance, all the copyright notices for all open source used in
the product.

• For products updates, the copyright information must also
be updated.

“Advertising materials may need special acknowledgments”

Open Source Compliance in the Enterprise

135

This advertising clause from the original BSD license is written as follows:

All advertising materials mentioning features or use of this software must
display the following acknowledgement: This product includes software
developed by the University of California, Berkeley and its contributors.

Where applicable, all marketing and advertising material (including web-
based, magazines, newspapers, flyers, etc.) must display
the acknowledgement.

GENERAL GUIDELINES

You’re probably already familiar with some of the guidelines that apply to
open source licenses, such as not using the name of the open source
project for endorsement, marking the source code modifications you have
introduced, and preserving the original licensing, copyright, and attribution
information. The following sections expand on these general guidelines in
more detail.

No Endorsing or Promoting

You cannot use the name of the open source project, authors, or
contributors in any marketing, advertising, or documentation (hard copy,
digital, or on the web) without prior written permission.

Source Code Modifications Markup

When redistributing modified open source code, your modifications need to
be clearly marked as such, including a copyright line for those modifications
(company, year) while preserving the existing copyright lines.

Some companies elect a different approach — providing the original
open source code along with the company’s contributed patch files that
apply against the original open source code. Following this approach, the
company’s modifications are clearly separated from the original open
source code.

Open Source Compliance in the Enterprise

136

Preserving Original License, Copyright, and Attribution

Whenever you are redistributing open source code, with or without
modifications, you must preserve the original licensing information, copyright
lines, and other attributions.

Source Code Comments

Do not leave any inappropriate comments in the source code, such as
private comments, product code names, mention of competitors, etc.

Existing Licensing Information

Do not remove or in any way disturb existing open source licensing
copyrights or other licensing information from any open source components
that you use. All copyright and licensing information is to remain intact in all
open source components.

Open Source Compliance in the Enterprise

137

Chapter 9
SCALING OPEN SOURCE LEGAL SUPPORT

Open source compliance is often more of an operational and logistical
challenge than a legal challenge. Achieving compliance requires the proper
policies and processes, training, tools, and proper staffing that enable
an organization to effectively use open source and contribute to open
source projects and communities, all while respecting copyrights of their
respective holders, complying with license obligations, and protecting the
organization’s intellectual property and that of its customers and suppliers.

However, legal counsel plays an indispensable role in supporting the open
source compliance programs and core teams that most organizations
create to ensure proper compliance. In this chapter, we look closely at
the role of the Legal Counsel in ensuring open source compliance, and
offer practical advice that a Legal Counsel can provide to the software
development team. Such practical advice will enable software developers to
make day-to-day decisions related to open source licenses without having
to go back to Legal Counsel for every single question.

PRACTICAL LEGAL ADVICE

Practical advice from Legal Counsel to software developers may include:

• License Playbooks: Easy-to-read, digest-form summaries of open
source licenses intended for software developers

• License compatibility matrix: A grid to help determine whether
License-A is compatible with License-B. Software developers can
use such a matrix as they merge incoming code from different
projects under different licenses into a single body of code.

• License classification: An easy way to understand the different
licenses, and the course of action needed when using source code
provided under these licenses

Open Source Compliance in the Enterprise

138

• Software interaction methods: A guide to understanding how
software components available under different licenses interact, and
if the method of interaction is allowed per company
compliance policies

• Checklists: A consistent, foolproof way to remember what needs to
be done at every point in the development and
compliance processes

In the following sections, we examine these five pieces of advice, provide
examples, and discuss how they help software developers working with
open source.

LICENSE PLAYBOOKS

License playbooks are summaries of commonly used open source licenses.
They provide easy-to-understand information about these licenses, such as
license grants, restrictions, obligations, patent impact, and more. License
playbooks minimize the number of basic questions sent to Legal Counsel
and provide developers with immediate legal information about
these licenses.

Figure 27 (next page) provides an example license playbook for the GPL v2.
Please note that this playbook is provided for illustration purposes only and
its content should not be considered definitive.

Open Source Compliance in the Enterprise

139

Figure 27. Example license playbook for GPL v2 (for illustration purposes only)

LICENSE COMPATIBILITY MATRIX

License compatibility is the determination of whether a software component
and its license are compatible with one or more other components and their
licenses (i.e., that their licensing terms do not conflict). Compatibility also

Open Source Compliance in the Enterprise

140

addresses the appropriate licenses for works that combine two or more
licenses (combined outlicensing).

License compatibility challenges can arise when combining diverse open
source software components, in source and/or object form, that are
distributed under licenses with incompatible terms. The result of such
combination is a licensing chimera, an aggregation of software components
that for purely legalistic reasons cannot be redistributed.

An example of licensing incompatibility can be found in attempting to
combine code distributed under the Apache version 2 license with
software under the GNU GPL version 2.0 (due to patent termination
and indemnification provisions not present in the older GPL license). An
example of license compatibility is combining code licensed under the X11
license, which is explicitly compatible with the GPL version 2.

Figure 28 illustrates the creation of a single source component that
originated from multiple sources under different licenses. In this scenario,
you must ensure the sources have compatible license terms that allow you
to join them in a binary or an object file without any conflict.

Figure 28. Combining source coming under different licenses into a single binary

Open Source Compliance in the Enterprise

141

License compatibility is an area where development teams need detailed
guidance from Legal Counsel and should never be left to draw their own
conclusions. Such guidance can be provided via a License Compatibility
Matrix that covers most popular licenses. An example matrix is provided in
Table 7.

Table 7. Example license compatibility matrix (for illustration purposes only)

License-A License-B License-C License-D License-E License-F License-G

License-A a a a

License-B a

License-C a

License-D a a a

License-E a

License-F a

License-G a a

When development teams need to combine code under different open
source licenses, they can refer to this matrix to determine if joining the
software components in question creates a licensing conflict. When a new
or novel license is encountered that isn’t included in the matrix, that license
should be analyzed by the Legal Counsel, who should update the
table accordingly.

LICENSE CLASSIFICATION

In an effort to reduce the number of questions received by Legal Counsel
and to increase license and compliance process education, some
companies opt to classify the most-used licenses in their products under
a handful of categories. Figure 29 (next page) presents an example license
classification, in which most-used licenses are divided into four categories.

Open Source Compliance in the Enterprise

142

Pre-approved Licenses

Permissive open source licenses often fall under this category. Source code
available under these licenses may be pre-approved for use by developers
without having to go through the approval process with their manager and/
or legal counsel. Such pre-approvals usually also require the developer to
capture any notices and to make sure they are sent to the
documentation team.

Licenses Requiring Manager Approval

Manager approval is required for components distributed under these
licenses, since in addition to notices fulfillment (publishing license text,
attribution notice, copyright notice, etc.), you have the obligation to release
any source code modifications.

Figure 29. Example license categories (for illustration purposes only)

Licenses Requiring Legal Counsel Approval

Source code available under these licenses requires legal review and
approval. This usually applies to licenses that have a patent clause.

Open Source Compliance in the Enterprise

143

Prohibited Licenses

Some companies flag certain licenses as “not allowed” — usage not
allowed by company policy.

How can classifying licenses be helpful?

The above license categories are a way to classify licenses to make it easier
for developers to know the proper course of action when integrating code
under these licenses. Furthermore, it makes it easy to create an association
between a license and what needs to be done. Table 8 shows one easy
way developers can remind themselves of the proper actions associated
with various licenses.

Table 8. A simple how-to for license classifications

Which License Action

License A Use with no problem
License E Get my manager’s approval
License I Consult with Legal
License M Can’t use this source code
Other Ask my manager for course of action

Please note that these different scenarios are provided for illustration
purposes only. You can set up a different classification model with different
actions depending on your organization’s policies and guidelines.

SOFTWARE INTERACTION METHODS

As part of the compliance process, there is usually an architecture review,
the goal of which is to understand how any specific software component
interacts with any other software component, and the method of interaction.
Architecture review should identify:

• Components that are open source (used “as is” or modified)

• Proprietary components

Open Source Compliance in the Enterprise

144

• Components originating from third-party software providers (both
open source and proprietary)

• Component dependencies

• Use of shared header files

• Component run-time context (kernel/drivers/modules, middleware,
libraries, applications, etc.)

• Inter-component dependencies beyond APIs (s/w buses, IPCs, web
APIs, etc.)

• Inter-language bindings

Tables 9 and 10 (next page) provide additional information that Legal
Counsel can provide to software developers. The tables illustrate which
licenses can dynamically or statically link to which others, while respecting
company policies.

Table 9. Sample dynamic linkage matrix

Can Dynamically Link To License-A License-B License-C License-D

License-A a a a a

License-B a a

License-C a a

License-D a [Requires

Pre-Approval]
a

For example, looking at Table 9, source code licensed under License-B
can dynamically link to source code license under License-D. However,
source code licensed under License-C cannot dynamically link to source
code licensed under License-B. Also, note that linkages may not always be
reciprocal between licenses.

Similarly, looking at Table 10, source code licensed under License-A can
statically link to source code license under License-C. However, source
code licensed under License-A cannot statically link to source code licensed

Open Source Compliance in the Enterprise

145

under License-B. Some linkage combination may be allowed on a case-by
case basis, which is why certain combinations note
“[Requires pre-approval].”

Table 10. Sample static linkage matrix

Can Statically
Link To

License-A License-B License-C License-D

License-A a a

License-B a [Requires

Pre-Approval]

License-C a a

License-D [Requires

Pre-Approval]
a

In the event that the architecture review reveals any linkage issue (i.e., a
static or dynamic linkage that does not follow company policy as defined
in the linkage matrices), then the person responsible for driving the
architecture review (usually the compliance officer) would notify the software
developer responsible for that software component and request
a correction.

CHECKLISTS

Most companies establish checklists that are used within the development
process at every major milestone. When it comes to open source
compliance, several checklists can be developed and used before
committing new external open source code to the product’s source code
repository. One example is the following checklist, used before making
source code available on an external website:

• All source code components have a corresponding
compliance ticket.

• All compliance tickets have been approved by engineering and legal.

• All compliance tickets are clear of any unresolved subtasks attached
to them.

Open Source Compliance in the Enterprise

146

• Notices for all of the software components have been sent to the
Documentation team and included in product documentation.

• Legal has approved the written offer notice and overall
compliance documentation.

• Source code packages have been prepared and tested to compile
on a standard development machine.

• Source code provided is complete and corresponds to the binaries
in the product.

Such checklists minimize the probability of error and ensure that everyone
involved in open source management is aware of what needs to be done
before moving to the next step in the process.

CONCLUSION

Software developers need to be educated about the licenses on the
various open source components they integrate and employ. Having Legal
Counsel provide this education in a very practical way is extremely helpful,
as it allows software developers to have access to documented practical
advice that will help answer most of their daily legal-related questions. This
practical advice usually revolves around:

• Inclusion of open source components into proprietary or third-party
source code or vice versa

• Linking open source components into proprietary or third-party
source code or vice versa

• Interaction methods between various software components
(proprietary, third-party,
open source)

• License obligations that must be met when using open
source components

Open Source Compliance in the Enterprise

147

Open source compliance is easy to achieve once you have built up your
compliance program, created a compliance policy and process, established
staffing to ensure execution, and enabled your team with various tools to
assist in the compliance automation aspect.

Open Source Compliance in the Enterprise

148

ABOUT THE AUTHOR

Ibrahim Haddad (Ph.D.) is Vice President of R&D, and the Head of the Open Source
Group at Samsung Research America, a wholly owned R&D subsidiary of Samsung
Electronics Co. Ltd., South Korea. He is responsible for overseeing Samsung’s
Open source strategy and execution, internal and external collaborative R&D
projects, participation in key open source development projects, and representing
Samsung in various open source foundations and open standards organizations.

Prior to joining Samsung, Haddad was a member
of the management team at The Linux Foundation
responsible for technical and legal compliance
projects and initiatives. Haddad’s career started at
Ericsson Research where he spent five years
focusing on advanced research for system
architecture of wireless IP networks and on
furthering the adoption of Linux and Open source
software in carrier grade environments. He then
joined Motorola as Technical Director managing
the Open Source Technology Group and
contributing to Motorola’s Open source initiatives.

After Motorola, he ran the Open Source function at Palm as Director of Open
Source responsible for the webOS open source strategy and compliance. He later
supported Hewlett Packard in a consulting role with open sourcing webOS to
become the open webOS project.

Haddad graduated with Honors from Concordia University (Montréal, Canada)
with a Ph.D. in Computer Science. He completed his B.Sc. and M.Sc. (both in
Computer Science) at the Lebanese American University. He is a Contributing
Editor to the Linux Journal, Co-Author of two books on Red Hat Linux and Fedora,
and Technical Editor for four books on Linux System Administration, Fedora Linux
and Ubuntu Linux. He is known for his writing and speaking on topics ranging from
open source legal compliance to using open source as a business strategy and an
R&D tool to drive collaboration
and innovation.

Haddad is fluent in Arabic, English, and French.

Twitter: @IbrahimAtLinux

The Linux Foundation promotes, protects and standardizes Linux by
providing unified resources and services needed for open source to
successfully compete with closed platforms.

To learn more about The Linux Foundation, please visit us at
linuxfoundation.org.

	Chapter 1
	INTRODUCTION TO OPEN SOURCE COMPLIANCE
	A CHANGING BUSINESS ENVIRONMENT
	ENTER OPEN SOURCE COMPLIANCE
	Benefits of Ensuring Open Source Compliance

	FAILURE TO COMPLY
	
Intellectual Property Failures
	License Compliance Problems
	Process Failures

	LESSONS LEARNED
	Ensure Compliance Prior to Product
Shipment/Service Launch
	Non-Compliance is Expensive
	Relationships Matter
	Training is Important

	Chapter 2
	ESTABLISHING AN OPEN SOURCE
MANAGEMENT PROGRAM
	OPEN SOURCE COMPLIANCE PROGRAM
	Inquiry Response Strategy
	Policies and Processes
	Compliance Teams
	Tools
	Web Presence
	Education
	Automation
	Messaging

	COMPLIANCE CHALLENGES AND SOLUTIONS
	Long-Term Goals versus Short-Term Execution
	Communicating Compliance
	Establishing a Clean Software Baseline
	Maintaining Compliance
	Institutionalization and Sustainability

	Chapter 3
	ACHIEVING COMPLIANCE: ROLES
AND RESPONSIBILITIES
	OPEN SOURCE REVIEW BOARD (OSRB)
	LEGAL
	ENGINEERING AND PRODUCT TEAMS
	COMPLIANCE OFFICER
	OPEN SOURCE EXECUTIVE COMMITTEE
	DOCUMENTATION
	LOCALIZATION
	SUPPLY CHAIN
	IT
	CORPORATE DEVELOPMENT

	Chapter 4
	OPEN SOURCE COMPLIANCE PROCESS
	EFFECTIVE COMPLIANCE
	ELEMENTS OF AN END-TO-END COMPLIANCE PROCESS
	Step 1 – Identification of Open Source
	Step 2 – Auditing Source Code
	Step 3 – Resolving Issues
	Step 4 – Reviews
	Step 5 – Approvals
	Step 6 – Registration
	Step 7 – Notices
	Step 8 – Pre-Distribution Verifications
	Step 9 – Distribution
	Step 10 – Final Verifications

	Chapter 5
	COMPLIANCE PROCESSES AND POLICIES
	POLICY
	PROCESS
	Source Code Scan
	Identification and Resolution
	Legal Review
	Architecture Review
	Final Review

	PROCESS STAGES’ INPUTS AND OUTPUTS
	Source Code Scan Phase
	Identification and Resolution Phase
	Legal Review Phase
	Architecture Review Phase
	Final Approval Phase
	DETAILED USAGE PROCESS
	INCREMENTAL COMPLIANCE PROCESS
	OSRB USAGE FORM
	Rules Governing the OSRB Usage Form
	AUDITING
	SOURCE CODE DISTRIBUTION
	Distribution Incentives
	Distribution Policy and Process
	Distribution Methods and Modes
	Distribution Checklists
	Pre-Distribution Checklist
	Post-Publication Checklist
	Written Offer

	Chapter 6
	RECOMMENDED PRACTICES FOR COMPLIANCE PROCESS MANAGEMENT
	COMPLIANCE PROCESS

	Identification Phase
	Source Code Auditing
	Resolving Issues
	Reviews
	Approvals
	Notices
	Verifications
	TOOLS AND AUTOMATION
	Source Code Identification Tools
	Project Management Tools
	Software Bill of Material (BOM) Difference Tools
	Linkage Analysis Tool

	CHAPTER 7
	MANAGING COMPLIANCE INQUIRIES
	RESPONDING TO COMPLIANCE INQUIRIES
	Acknowledge
	Inform
	Investigate
	Report
	Close Inquiry
	Rectify
	Improve
	General Considerations

	
CHAPTER 8
	OTHER COMPLIANCE-RELATED PRACTICES
	EMPLOYEE APPRAISAL
	WEB PORTALS
	MESSAGING
	TRAINING
	Informal Training
	Formal Training
	SOURCE CODE MODIFICATION CONSIDERATIONS
	NOTICES CONSIDERATIONS
	DISTRIBUTION CONSIDERATIONS
	USAGE CONSIDERATIONS
	ATTRIBUTION CONSIDERATIONS
	Attribution Types
	Presentation of Attributions
	SPECIFIC LICENSE OBLIGATIONS
	GENERAL GUIDELINES

	Chapter 9
	SCALING OPEN SOURCE LEGAL SUPPORT
	PRACTICAL LEGAL ADVICE
	LICENSE PLAYBOOKS
	LICENSE COMPATIBILITY MATRIX
	LICENSE CLASSIFICATION
	SOFTWARE INTERACTION METHODS
	CHECKLISTS
	CONCLUSION

