
February 2007 PAGE 8 EnterpriseOpenSource.SYS-CON.com

adoption

Is the Open Source Development
Model Right for Your Organization?
A roadmap to open source adoption

by Ibrahim Haddad

T
he open source development model has unique characteristics that make it in some

instances a superior model for developing software compared to the traditional

software engineering cascade model. As with other practices, the open source

development model had its advantages and inconveniences. Will adopting the open source devel-

opment model improve the way your corporate developers work and produce software? What

are the best practices from the open source development model that we can use in a corporate

environment?
 The open source software development
model has a different process and set of
values than traditional proprietary software
development model. The traditional software
development process consists of six activities
illustrated in Figure 1: collecting and analyzing
requirements, designing a solution approach,
developing the code, testing, deploying, and
maintaining. After each step is fi nished, the
process proceeds to the next step.
 The open source development model has
key differences compared to the traditional
model of developing software (collect require-
ments, design, implement, test, release, and
maintain).
 The open source development model, illus-
trated in Figure 2, starts with the idea for a new
project, a new functionality or capability for
an existing open source software component.
The next step is to provide a design for the
implementation and then a prototype of the
capability and translate it from an idea into
running software. At the moment the software
runs, it’s released as a development release,
even though it may contain known and un-
known bugs. This follows the spirit of release
early and release often.
 The software will be tested by the com-
munity, which discusses the software through
mailing lists and discussion boards and pro-
vide feedback, bug reports, and fi xes through
the project mailing list. The feedback is
recorded and taken into consideration by proj-
ect members and maintainers to improve the
implementation and then a new development
release will be available. This cycle repeats as

often as needed until project members feel
the implementation is stable enough. When
the implementation is released as stable, the
development cycle continues with the devel-
opment release (also called the development
tree) until a newer stable release is available.
 Some of the unique characteristics of the
open source development model include:
• Bottom up development: Project members

who do the most work get the most say
when it comes to making design and imple-
mentation decisions. Those who do the
most work get the most say. Relationships
between developers are very important.

• “Release early, release often”: Don’t wait to
have a fully working version to make the code
public. This release philosophy allows for
peer review, where all members of the com-
munity can comment and offer suggestions
and bug fi xes. It also allows for small incre-
mental changes that are easier to understand
and test. Open source projects tend to make
a release available early to be used by the
user community and then update the release
as the software is modifi ed. This practice is
described as “release early, release often.”
The open source community believes that
this practice leads to higher-quality software
because of peer review and the large base of
users who are using and testing the soft-
ware, accessing the source code, reporting
bugs, and contributing fi xes. A side benefi t
of having many people looking at the code
is that the code is reviewed for adherence to
coding style; fragile or infl exible code can be
improved because of these reviews.

February 2007PAGE 9EnterpriseOpenSource.SYS-CON.com

• Peer review: Members of the open source project review the
code, provide comments and feedback to improve the quality
and functionality, and test to catch bugs and provide enhance-
ments as early as possible in the development cycle. The result
is high-quality code.

• Small incremental changes: In open source project develop-
ment, additional features are often small and non-intrusive and
for good reason:
– It’s easier to understand small patches and code changes than big changes in the code or big

architectural redesigns.
– The small changes are important because they help focus the testing phase, which is cyclical

and ongoing with every increment of the software.
– A small change is less like to have unintended consequences.

• Features that ignore security concerns are flagged: The open source community takes
security very seriously and any development or capability that jeopardizes the security of the
software is flagged and not included in the software until the security concern is dealt with.

• Continuous quality improvement: This is due to the extensive peer review and quick bug fixes
• Test projects: In many cases, test projects are created for large open source projects to create

test suites and automate testing.
• End-user involvement in the entire process: In Figure 2, we notice that the users are involved

in all phases of development in the open source model.

Communication
 Open source developers primarily communicate with each other using mailing lists. In the
table below, we illustrate some slight differences concerning communication in an open source
project compared to a corporate project.

Open Source Corporate

• Open Source developers are distributed across

the world

• No face-to-face meetings

• No conference calls

• Depending on the size of the company, develop-

ers can be in different geographies

• Weekly or bi-weekly project reviews to track prog-

ress, lead by project managers

• High reliance on conference calls and face-to-face

meetings

• E-mail is very important as the primary mean of

communication between open source project

members

• Discussions happen on open mailing lists

• E-mail is important

• Discussions are mostly face to face and in confer-

ence calls

• A lot of one-to-one e-mails between project

members

• Many open source projects use chat for quick

developer and user discussions

• The use of chat software among corporate devel-

opers is growing as a cheap way to communicate

versus travel for face to face meetings

Figure 1: The cascade model of traditional software engineering

Figure 2: Open source development model

(SOURCE: BILL WEINBERG, OPEN SOURCE DEVELOPMENT LABS, 2006)

February 2007 PAGE 10 EnterpriseOpenSource.SYS-CON.com

Project Hierarchy
 Open source projects are organized differently than corporate projects. In the table below, we
illustrate some key differences between open source projects and corporate projects focusing on
project organization and hierarchy.

Open Source Corporate

• Open source development teams primarily work to-

gether in a decentralized fashion with little hierarchy

• Hierarchy is loose and fl exible

• Those who make the most contributions have the

most say about the project

• Well structured with defi ned roles for the project

manager, project architect, senior developer, etc.

• There are no formal requirements for joining and

no formal rules for participating

• The lack of formality doesn’t mean that there are

no standards for participating or behaving

• There are strong unwritten rules that govern all

community interactions

• Community members are expected to interact

respectfully, make reasoned arguments about why

a particular course of action is right, and above all,

contribute to the community

• There are formal processes to follow when an

individual wants to work on a new project

• Individuals follow and respect company rules and

regulations, and are expected to contribute to the

success of the project

• Bottom-up development approach where deci-

sions and power is as close to the bottom as

possible (i.e., developers who write the code have

a say in the direction of the project)

• Top-down development approach where project

management makes the decisions and pushes it

down to the implementers

• Meritocracy drives advancement and acceptance

• As developers prove their competence and their

contributions prove to be valuable to the project,

they become more infl uential

• Corporate adopts specifi c criteria as part of its

performance management

• Open source project members work on a project

when, and as much, as they feel like it

• Open source project members work on a project

until they get bored and loose interest in the

project

• Members of a project are fully dedicated to it and

must dedicate all their time to the project

• Must respect project deadlines and deliverable

schedules

• Can’t stop working on a project without manage-

ment approval

• Quality levels are often negotiable since the fi rst

goal is to provide a working prototype/proof-

of-concept, but after several cycles the quality

improves tremendously

 • Quality is very important and often specifi c quality

goals are request by customers

• The project leader is usually the person who

originated the project or the person with the most

technical competence and contributions working

on the project.

• The project leader manages the project by consen-

sus, leading by example

• The project leader is responsible for developing a

common understanding of what functionally the

upcoming release will contain, encourage new de-

velopers to join the project, help developers select

a portion of the project to work on, and solve any

confl icts that arise between team members

• The project leader is usually the manager as-

signed to the project by management

• The project leader is responsible for project

requirements, communicating them, assigning

developers portion of the work, and resolving

confl icts

Many companies are adopting some of the practices of the open source development;
the open source development model has special characteristics that make for faster

development, faster testing, higher innovation,
peer review, total openness, and transparency

adoption

February 2007PAGE 11EnterpriseOpenSource.SYS-CON.com

Cultural Differences
 Working with the open source community is very different from the traditional corporate
development environment and has a different process and set of values from the traditional
proprietary development model. In the table below, we illustrate some key cultural differences
between an open source development environment and a corporate development environment.

Open Source Corporate

• Open source developers work on what they find

interesting and bring tremendous energy to the

project they contribute to

• Corporate developers work on projects they are

assigned to

• Open source developers are usually volunteers

who donate their time to open source projects that

benefit the community as a whole

• Corporate developers are paid to work on com-

pany projects

• Motivation for improving and developing a given

piece of software is unpredictable. It might vanish

or decrease depending on the interest in this piece

of software. Release schedules are uncertain.

• Motivation for improving and developing a given

piece of software is driven by customer demand

• Open source developers work on features of

interest to them. As such, they don’t work to meet

specific deadlines, but work as long as they’re

interested in the project.

• Corporate developers are paid by their compa-

nies to devote their time to the projects they’re

assigned to

• Open source developers work in the open with full

transparency and extensive peer review of their

code

• All code developed for the project will be viewed,

reviewed, and enhanced

• Development typically takes place in a product

group that is often closed and not available to

others in the company for cultural reasons and

little peer review outside the group that did the

development

• Open source developers welcome code contribu-

tions written by other developers

 • Corporate often suffer from the “not invented

here” syndrome in accepting code written by

others

• Moving from writing propriety code to contributing

source code to open source or using code devel-

oped by others is a new way of doing things.

• Many corporations are developing open source

policies and procedures, and creating open source

training for their employees

• Open source developers are famous for their code

reuse practices and try to avoid doing something

twice if it can be automated

 • Corporates are encouraging code reuse among

their developers in an effort to produce reusable

software to help cut their costs

• Open source developers maintain a source code

tree that is open and available for all to see and

access. They follow the release early release often

practice that gives a good estimate of the progress

and helps catch bugs early

• Corporate developers follow strict rules when it

comes to accessing source code trees and offer-

ing stable releases

Many companies are adopting some of the practices of the open source development;
the open source development model has special characteristics that make for faster

development, faster testing, higher innovation,
peer review, total openness, and transparency

February 2007 PAGE 12 EnterpriseOpenSource.SYS-CON.com

The Benefi ts of Adopting Open Source
Working Methods
 There are several open source development practices that corporates
can benefi t from adopting in their development environment that can
improve code quality, communication, effectiveness, and performance.
• Using open development methods “à la Sourceforge”
– Open source code tree: Make source code available to others to

review and offer feedback and suggest improvements (peer review).
Inside a company, this lets teams work across organizational lines
and lets others add value to the software. Different users tickle differ-
ent bugs, leading to higher quality. The practice of incrementally add-
ing functions allows for better testing and better chances of capturing
bugs. Cooperation is good and benefi ts all.

– Open mailing list used for all project-related discussions.
– Bug tracking systems.
– Technical support tracking systems.
– Patch tracking systems.
– Feature request tracking systems.
• Fast development cycle with small incremental changes
– Adopt the “release early and release often” practice.
– Go through the cycle several times.
– Apply small incremental changes in the release to make it easier to

understand and test.
– Faster development builds.
– Shorter time-to-market.
• Pay special attention to quality and security
• Encourage reuse
– Promote and encourage company developers to use open source

software and tools in their development environment where it might
meet their needs

– Include open source software in products based on a set of criteria
such as technical merits, time-to-market advantage, and avoiding
vendor lock-in.

– Code reuse improves effi ciency and increases cost savings.
• Build reusable software components
– Don’t keep reinventing the wheel and don’t act superior. If someone

has already implemented the capability or feature you need, use it,
and build on top of it.

– When you develop from scratch, keep reuse in mind, and develop
code in modules that can be used by others and by you for other situ-
ations without much modifi cation.

• Respect and follow community coding style
– The open source community follows a strict coding style to make it

easier to understand the code, review it, and revise it quickly.
• Flag problems early and review with the team
– Hiding problems or bugs until you come up with a solution isn’t

encouraged.
– It’s advisable to report bugs or problems when they turn up; the

community will help you come up with a workaround or propose and
help implement a better solution.

– Openness and honesty is key.
• Foster innovation
– New ideas have a better chance if engineers can review the source

code and experiment with and build proof-of-concept code and test
different methods.

Recommended Practices Description

Increase team communication

Using mailing lists, chat software, wikis

End-user feedback Involve the end user to get feedback as

you proceed

Peer review Encourage peer review and provide an

environment that welcomes feedback

and suggestions

Release early and often Adopt the “release early release often”

development practice for the many

benefi ts it offers as compared to the

traditional release model, and follow

the model of continuous integration and

automated test environments

Transparency Adopt transparency and openness by

using open source code trees, bug track-

ing database, and mailing lists that are

open to the whole company.

Good code design Build a minimal code base and add all

the functions and capabilities as sepa-

rate modules to encourage reuse and

ensure easier testing.

Conclusion
The open source development model has proved to be a very success-
ful model with hundreds of open source projects that can be used as
a success story. This development model has special characteristics
that allow faster development, faster testing, higher innovation, peer
review, total openness and transparency. In this article we reviewed
the open source development model and compared it to the tradi-
tional corporate development model. Many companies are adopting
some of the practices of the open source development model for the
advantages it offers.
 Will these practices be right for your company? You be the judge!

About the Author

Ibrahim Haddad is currently director of embedded & open source technology at Motorola where

he is responsible for defi ning and developing the requirements for Motorola Software Group’s

open source initiatives. Prior to Motorola, Dr. Haddad managed the carrier grade Linux and

mobile Linux initiatives at the Open Source Development Lab (OSDL), which included promot-

ing the development and adoption of Linux and open source software in the communications

industry. He is co-author of two books on Red Hat Linux and Fedora, a contributing editor of the

Linux Journal, Linux Planet, and Enterprise Open Source Magazine, and a featured speaker and

panelist at industry conferences such as Linux World, GlobalComm, Ottawa Linux Symposium,

and academic conferences hosted by IEEE, ACM, and USENIX. He got his BSc and MSc in

computer science from the Lebanese American University, and his PhD in computer science from

Concordia University in Montreal, Canada.

adoption

