
enterprise

Adopting an Open
Source Approach
to Software Development,
Distribution, and Licensing
Advantages, Risks,
Culture Change,
and Strategies

About the Author

Dr. Ibrahim Haddad is the Director of Portfolio Manage-

ment for the Embedded Systems, Open Source and Linux

software technology group at Motorola. In this role he is

responsible for defi ning and developing the requirements

for Motorola’s open source initiatives. He represents Mo-

torola in Linux and open source forums driving Motorola’s

interests and overall strategy. He is also involved with

customers and partners on matters related to embedded

systems and open source software technologies.

ibrahim.haddad@motorola.com

October 2006 PAGE 10 EnterpriseOpenSource.SYS-CON.com

by Ibrahim Haddad

October 2006 PAGE 11EnterpriseOpenSource.SYS-CON.com

S
ince the beginning of the software industry, nearly every

software company in the world has followed the same busi-

ness model: its own employees develop the software, which

is closely held intellectual property, the software is delivered to clients in

binary form, and users run the licensed software on their own computers.

Today, this model has been challenged by a new paradigm: open source.

Developed and maintained by volunteers across the world, distributed

to users at no cost, and available as source code, open source software is

radically different from its proprietary counterpart. Each of the new charac-

teristics of open source software forces organizations to develop new ways

of thinking about how they procure, implement, test, and deploy it.

 Accessible without cost, open source software is created under condi-
tions very different from commercial software and is distributed to
users under very different licensing terms from commercial software.
Open source software developers take responsibility for the quality
of the software. This responsibility demands a new model of software
procurement, one where the organization is an active participant in
creating the complete software, rather than a passive recipient of what
the vendor delivers. The new model demands new working methods
and practices. In this article, we’ll discuss the open source develop-
ment model and practices. We’ll explore the various benefits and risks
the open source model brings to development practices, and possible
strategies to support and get involved in open source.

Open Source versus Freeware
 It’s important to note that open source differs significantly from free-
ware. Freeware is software distributed without a fee, but without source
code access. Freeware creators restrict intellectual property rights to the
software slightly and offer the software on a “as is” basis in contrast to
open source, which carries less restrictive licensing terms and lets users
modify the software product if they want. Freeware is often distributed
on a “time-restricted/limited” basis, meaning that it’s only free for a
while. When time is up, the software stops working. If the user wants
to continue using it, he has to pay a licensing fee to disable the time
restriction.

Open Source Software
 Open source software is software whose source code is freely avail-
able to its users. It can be downloaded from the project’s Web site and
used or modified as desired, as long as its license requirements are
observed. Open source software and the open source community have
unique characteristics:
• Zero-price software: Open source software is distributed at no cost.

There’s no charge for the source code and there are no licensing fees.
• A different licensing model: Like any other software, open source

software is distributed under a license that controls how it can be
used. However, open source licenses are less restrictive than the
licenses on proprietary software in terms of how the software can

be used. Typical license conditions include contributing any source
code changes back to the main source base and distributing source
changes to any customers of the organization that modified the code.
The specific conditions depend on the kind of open source license
used. It’s important to state that open source licenses are written to
encourage wide use, with few restrictions put on the software’s use.
For a list of approved open source licenses, see http://www.open-
source.org/licenses.

• Open source software developers: Open source developers come
from different backgrounds. They are volunteers who donate their
time to work on open source projects. The fact that open source
software is written by volunteers affects how open source teams are
formed and how they work together. Because individuals participate
based on their interest in the software, open source management
practices are also very different from those in commercial software
companies. Open source development teams work together in a
decentralized fashion with little hierarchy. The project leader is usu-
ally the person who originated the project; he or she must manage by
consensus with a lead-by-example approach. The project leader is re-
sponsible for developing a common understanding of what function-
ally the upcoming release will contain, encouraging new developers
to join the project, helping developers select a piece of the project to
work on, and solving any conflicts that arise between team members.
The hierarchy is loose. The best way to describe the hierarchy and
leadership is to say, he who writes the code and contributes to the
project makes and influences the decisions.

• The philosophy of community: The practice of frequent releases to
gather user feedback underscores a distinguishing characteristic of
the open source world – the community. The open source commu-
nity refers to groups of contributors and users participating in and
organized into a community based on their field of interest. There are
no formal requirements for joining and no formal rules for partici-
pating. However, the lack of formality doesn’t mean that there are no
standards for participating or behaving. Unwritten rules govern all
community interactions. A community member is expected to inter-
act respectfully, make reasoned arguments about why a particular
course of action is right, and, above all, contribute.

• Development practices: Open source projects tend to make releases
available early to the user community and then update the releases
quickly as the software is modified. This practice is described as “re-
lease early, release often.” The open source community believes that
this practice leads to higher-quality software because of peer review
and the large base of users who are using the software, accessing the
source code, reporting bugs, and contributing fixes. A side benefit of
having many people look at the code is that it’s reviewed for adher-
ence to coding standards; fragile or inflexible code can be improved
because of this review.

Open Source Development Model
 The open source development model is distinctly different from the
corporate development model, which follows the traditional waterfall
software model of collecting requirements, designing, implementing,
testing, and then releasing.
 The open source development model, as illustrated in Figure 1, starts
with an idea for a new project, new functionality, or new capability
for an existing open source software component. The next step is to
provide a design for the implementation and then a prototype of the
capability and to translate it from an idea into running software. Fol-
lowing the spirit of release early and often, the moment the software

October 2006 PAGE 12 EnterpriseOpenSource.SYS-CON.com

runs, it’s released as a development release, even though it may contain
known and unknown bugs. The software will be tested by the commu-
nity, which discusses the software and provides feedback, bug reports
and fi xes through the project mailing list. The feedback is recorded and
taken into consideration to improve the implementation, and then a
new development release will be made available. This cycle happens as
many times as needed until project members feel the implementation
is stable. When the implementation is released as stable, the develop-
ment cycle continues with the development release (also called the
development tree) until a newer stable release is available.

 Some of the unique characteristics of the open source development
model include:
• Bottom-up development: Project members who do the most work

get the most say in design and implementation decisions.
• “Release early, release often”: This release philosophy allows for

peer review, with all members of the community commenting and
offering suggestions and bug fi xes. It also allows for small incremental
changes that are easier to understand and test.

Open Source: Advantages & Risks
 Let’s turn briefl y to the advantages and risks of using open source
software components, and the cultural changes wrought by this model:

Advantages to using open source software components in commercial
products
• Do more with less: Using open source components, your organiza-

tion can reduce development costs and time-to-market and focus on
the added value it brings to the product. Following this model, you
should therefore source enablers and tools as much as possible and
focus on your core business.

• Open source is an additional sourcing channel: Typically, you de-
velop software yourself within your organization or subcontract it to
third party. With open source, you gain an additional sourcing chan-
nel.

• Improved quality by peer review: The open source community has
a special development cycle characterized by early and frequent
releases, which facilitates extensive peer review.

• Using open source for standardization reference implementations:
Open source is a way to launch reference implementations for stan-
dardization projects in parallel with our standardization efforts. When
it benefi ts your company, you should promote the development
of reference implementations as open source software in various
standardization bodies. Open source implementations advance faster
than proprietary ones.

• Access to source code: Access to the source code lets us modify it and
build on top of it to suit our specifi c needs.

• Undercut the competition: Open source can be used as a way to share
the cost of developing software components and reset the competi-
tion.

• Faster path to innovation: Software components continue to be
improved with people contributing fi xes, patches, and new function-
alities.

Risks of using open source components
 Along with advantages come the risks of using open source software
components:
• Requirement to disclose source code: This depends on which license

is attached to the open source software component.
• IPR responsibility: With open source software, you’re responsible for

any IPR-related issues. With third-party software, verifying IPR-re-
lated issues are the vendor’s responsibility. Problems with intellectual
property and software patents can surface because the availability of
the source code simplifi es the detection of infringements by IP own-
ers.

• Open source software evaluation: Like any other third-party soft-
ware, open source software must go through an evaluation process. If
it’s open source, its quality isn’t necessarily superior. You still need to
evaluate the quality and the functionalities provided. There are some
quantitative approaches available or in development to assess the
maturity of open source software components, including the Open
Source Maturity Model (OSMM) and the Business Readiness Rating (a
new model for rating open source software).

• Competing open source projects: There can be competing open
source projects, which means you have to evaluate all of them.

• No control over project deliverables and deadlines: The communi-
ty’s motivation for improving and developing a piece of software is
unpredictable; it might vanish or at least decrease. Release schedules
are uncertain.

enterprise

Figure 1: Open source development model (Source: Bill Weinberg, OSDL)

Organizations that embrace the open
source model increase their chance of
retaining a competitive advantage

October 2006 PAGE 14 EnterpriseOpenSource.SYS-CON.com

• Many developers are working on their own time: Open source devel-
opers will only work on features that interest them, which vary a lot.
As such, they don’t work to deadlines, but work on a project as long as
they’re interested in it.

Cultural Changes
 Working with the open source community is different from the tradi-
tional corporate development environment. It has a process and set of
values that is different from traditional proprietary development model.

Corporate Development Open Source Development

People work to meet project or client

requirements

People work on what they fi nd inter-

esting (but, they bring tremendous

energy to the project)

People work to meet project dead-

lines

People work when and as much as

they feel like (which can turn out to

be quite a lot)

People work on a project until it’s

completed

People work on a project until they

are satisfi ed with it

People work to meet specifi c quality

goals

Quality goals are sometimes nego-

tiable (but many eyes can make few

bugs and the release early and often

process helps improve quality)

 Furthermore, working with open source and following the open
source method will have an impact on the work methods and culture of
an organization.
• Changing working methods: Working with open source and follow-

ing the open source development mode impacts the way an organiza-
tion develops software, moving it from the “Not Invented Here” (NIH)
syndrome to using open processes and accepting code written by
others.

• Distributed development: The open source community doesn’t as-
sume that development is done in a single location. Using the same
development tools as the open source community will encourage
corporate software engineers to work more closely together.

• Investment versus cost: Working with the open source community
should be perceived as a strategic investment with long-term benefi ts
rather than a cost.

• Contributing code: Moving from writing propriety code to contrib-
uting source code to open source is a new way of doing things and
people should be open to it, accepting criticism and implementing
suggestions.

• Staying competent: Working on open source projects and being
exposed to open technologies is new way of working, being educated
and staying competent.

Open Source Strategies
 There are many open source strategies that can be adopted and cus-
tomized to your organization. Below we list three major strategies that
are very common.
1) Promote and encourage company developers to use open source

software and tools in their development environment when they
meet their needs.

2)Include open source software components in commercial products
based on a set of criteria such as technical, merit, time-to-market
(TTM) advantage, and avoiding vendor lock-in.

3) Contribute source code, initiate projects, and be leader in the open
source community. Contributing to open source must be business-
driven and decisions to participate and contribute are taken on a case-
by-case. Examples of business-driven contributions include providing
a reference implementation to establish a project as a de facto industry
standard, commoditizing a market, ensuring that new features are of
interest to your organization, contributing enablers and software that
aren’t valuable enough to keep proprietary or as no-margin products.

 Once a company adopts an open source strategy, the next task is to
communicate it to the development organization, business units, and
technology groups.

Conclusions
 Open source software is shifting the software industry to a new para-
digm, moving from developing code behind closed doors and deliver-
ing binaries to customer, to developing code that’s shared, modifi ed,
and redistributed openly. Key benefi ts associated with this shift are the
reduction in development cost and software component complexity
and developing reusable, common off-the-shelf software assets, while
increasing fl exibility and using common enablers. Organizations that
embrace the open source model and follow it when it positively infl u-
ences their way of building software will increase their chance of retain-
ing a competitive advantage.

Further Readings
• Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux

and Open Source by an Accidental Revolutionary. O’Reilly. ISBN
1565927249. The book is also available as free download from the
author’s Web site at http://www.catb.org/~esr/writings/cathedral-ba-
zaar/.

• Martin Fink. Business and Economics of Linux and Open Source.
Prentice Hall, ISBN 0130476773. http://www.hp.com/hpbooks/strategic/
strategic_0130476773.html.

• Bernard Golden. Succeeding with Open Source. Addison Wesley
Professional. ISBN: 0321268539. http://www.awprofessional.com/ti-
tle/0321268539.

enterprise

Once a company adopts an open source
strategy, the next task is to communicate it
to the development organization, business
units, and technology groups

