
DETERMINING THE

TRUE
OPENNESS
OF OPEN SOURCE PROJECTS

IBRAHIM HADDAD, PHD

Ibrahim Haddad, PhD

Determining the True
Openness of Open

Source Projects

The motivation for writing this paper originated from various
discussions evolving around what makes a project a true open
source project beyond just the choice of license. People have
different opinions and thoughts about the various indicators of
a project’s openness. In this paper, we explore such indicators
that together can help define the true openness of a given
project and conclude with some recommended practices and
other practices to avoid in an open source project, touching on
a dozen different areas. We hope this paper becomes a trigger
for new conversations in open source projects on how to be
more open, transparent, and inclusive.

Copyright © 2019 The Linux Foundation. All rights reserved.

This book or any portion thereof may not be reproduced
or used in any manner whatsoever without the express

written permission of the publisher except for the use of brief
quotations in a book review and certain other noncommercial

uses permitted by copyright law. Please contact
info@linuxfoundation.org to request permissions to reproduce

any content published in this paper.

Printed in the United States of America

First Edition, 2019

1 Letterman Drive
Building D

Suite D4700
San Francisco CA 94129

4

Determining the True Openness of Open Source Projects

Contents
Introduction	 5

Chapter 1: Openness Indicators� 6
GOVERNANCE	 6

Contributions	 6
Direction and Finance	 6
Transparency	 6
Re-use	 7
Copyright and trademark	 7

ACCESS	 7
PROCESSES	 8
DEVELOPMENT	 8
COMMUNITY STRUCTURE	 9
RELEASE NOTES	 9
ROADMAP	 9
LICENSE AND INTELLECTUAL PROPERTY CONSIDERATIONS	 10

License	 10
Derivatives	 10
Contribution mechanisms	 10
DCO sign-off process	 11
Contributor license agreement (CLA)	 11
Software Package Data Exchange license format	 11

DOCUMENTATION	 12

Chapter 2: Recommended Best Practices� 13

Chapter 3: Characteristics of a great open source community� 17

Chapter 4: Call to Action	 19

Chapter 5: Closing	 23

References	 24

Acknowledgments, Feedback & Disclaimer	 25

About the Author	 26

5

Determining the True Openness of Open Source Projects

Introduction

The success of an open source project depends on many factors, where
openness is one of the essential ones. The primary premise of this paper is
to explore and identify the various indicators that can provide insights about
the openness of a given project. The paper is organized in four sections:

•	 Openness indicators: This section examines such indicators and
discusses how they contribute to the openness of the overall project.

•	 Best and worst practices: This section provides recommendations for
practices that can enable and foster an open environment that will help
open source projects grow and prosper. The section also covers some
of the worst practices that you want to absolutely avoid.

•	 Characteristics of a great open source community: This section
offers thoughts on the common characteristics of successful and
thriving open source project communities.

•	 Call to action: This section focuses on how participants in open
source projects can do a better job with respect to openness.

6

Determining the True Openness of Open Source Projects

Chapter 1
OPENNESS INDICATORS

GOVERNANCE
Governance determines who has influence and control over the project
beyond what is legally required in the open source license. A project’s
governance model establishes a collaboration framework that addresses
difficult questions such as:

Contributions

•	 Who makes decisions for code inclusion and releases, and how?

•	 Who can be the lead maintainer or architect for the project (larger
projects have more than one)?

•	 How can the project contributors become maintainers or committers?

Direction and Finance

•	 How can the project raise money and who decides how this money is spent?

•	 Should the project have a Technical Steering Committee or a
Conformance and Certification Committee? Who can be on them?

•	 Who decides the project’s direction and roadmap?

Transparency

•	 Who can participate in the discussions and decide on critical matters?

•	 How transparent are the decision-making processes?

•	 Can anyone follow the discussions and meetings that take place in
the project?

7

Determining the True Openness of Open Source Projects

Re-use

•	 What compliance requirements are there for redistributing, modifying or
using the software?

•	 How can the project enable contributors and downstream re-distributors
to comply with these requirements?

Copyright and trademark

•	 Who owns the copyright on contributed code?

•	 How can users license the project’s branding?

ACCESS
A key indication of project openness is how publicly accessible the project’s
resources, communications (mailing lists, IRC, Slack, etc.) and history are,
beyond the current active participants. For starters, an open project will
provide the same level of source code availability to all developers, meaning
there is no favoritism to developers via priority access.

Collaboration in most open source communities is centered on a relatively
standardized set of tools, such as wikis, IRC, and mailing lists, which allow
members of the community to communicate with each other. It is worth
noting though that there may be circumstances where mailing lists with
limited distribution are appropriate, e.g. for handling pre-disclosure security
vulnerability reports, however, these are rare and special cases. Open
source communities often rely on tools such as GitHub, git, Bugzilla, JIRA,
and file servers to collaborate on code development; wikis and blogs are
often used to inform about the community efforts. Project policies and
infrastructure must be in place to ensure developers can adequately interact
with each other using these tools.

Additionally, open projects provide access to developer tools such as
mailing lists, forums, bug-tracking systems, source code repositories, and
documentation. Participants are able to join discussion platforms, decision-
making mechanisms, and project roadmaps so it is possible to understand
why and how the project makes decisions.

8

Determining the True Openness of Open Source Projects

PROCESSES
A project with a high degree of openness will have clearly defined processes
for how things work in the community and how to contribute to the project.
For starters, a clear development process should outline how to incorporate
code into the project, the release process and schedule of the project, and
any requirements developers need to meet to get their code accepted. This
should also include guidelines for participation that demonstrate community
best practices for things like patch submissions, feature requests, bug
reports, and signing-off on code contributions.

DEVELOPMENT
An open development process enables developers to influence the direction
of the project via contributions. It encourages contributions through the
visible recognition of the developers and the provision of a transparent
contribution and acceptance process that provides clear feedback on
updates to contributions as they are incorporated into the project. This
transparency should also allow external participants to identify the source
from which code contributions originated.

Release early and release often is a practice that has been integral to
open source software for most of its history. This practice allows open
source communities to innovate at a rapid pace with a high quality of code
because it creates a much faster feedback loop between developers,
testers, and users. Releasing early allows feedback at an earlier stage
of development so new ideas can be incorporated while the code is still
flexible; it also allows any potential issues to be flagged more quickly.
Releasing often results in smaller changes that are easier to understand,
debug, and improve which makes it much easier to maintain a rapid
development pace. This practice also aligns well with the progressive
movement of many industry projects towards agile development and
continuous integration / continuous delivery (CI/CD) methodologies.

9

Determining the True Openness of Open Source Projects

COMMUNITY STRUCTURE
Open source project communities usually start with a flat structure and
transition to a hierarchical structure as they grow in terms of contributors,
and as the body of code becomes more complex, requiring additional
maintainers. From that perspective, the code leadership evolves around
committers, maintainers, and reviewers (please note that not all projects
support these levels of contributors).

Two key factors that indicate the openness of a project’s community structure are:

1.	 The commitment that individuals responsible for the project leadership
get their roles based on talent, effort, and achievements in the project.

2.	 A key component of community openness is the accessibility to
become a committer, reviewer, or maintainer. This process should be
clearly documented and equitable so that any contributors to projects
have the potential to be promoted to one of these roles.

RELEASE NOTES

In open source projects, with hundreds and possibly thousands of
developers, documenting releases is a fundamental requirement. There are
many advantages that result from providing detailed release notes, such
as providing visibility into the project’s progress, documenting continuous
improvements to the project with every release, providing a great reference
for new users of developers joining the project, and in general using it as a
communication tool.

Another possible related openness indicator is how the project offers credit
to all contributors via the release notes or a specific file that lists all contributors.

ROADMAP
At a high level, roadmaps provide high-level overviews of the project’s goals
and deliverables for that release. Open source projects that maintain an
open roadmap achieve several advantages and are able to:

10

Determining the True Openness of Open Source Projects

•	 Communicate the plans and goals for each release (minor, major, etc.),

•	 Manage the expectations of its users and developers by generating a
shared understanding across everyone involved in the project, and

•	 Expose the project’s plans to other open source projects that possibly
rely upon or use them as a dependency.

LICENSE AND INTELLECTUAL PROPERTY
CONSIDERATIONS

License

The license of an open source project determines the rights to use, copy, modify,
and distribute the code. The choice of license for an open source project is
an essential factor in determining the openness of the project. Open source
projects should only use licenses that are approved by the Open Source
Initiative and/or recognized as “free / libre” by the Free Software Foundation.
Such licenses allow software to be freely used, modified, and shared. To
be approved by the Open Source Initiative, a license must go through their
license review process to confirm that the license satisfies their Open
Source Definition (“OSD”). You may come across many other licenses that
are incompatible with the OSD. Most of these licenses are considered “Source
Available” licenses that commonly include restrictions or limitations on the use
and/or distribution of the software. These restrictions often render the licenses
as incompatible with the OSD.

Derivatives

Developers should be able to create and distribute derivatives of the source
code for their own projects or reuse the code in other projects. To allow this,
the project needs to be available under an appropriate license that provides
these freedoms.

https://opensource.org/licenses

https://opensource.org/licenses

https://opensource.org/approval
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated

11

Determining the True Openness of Open Source Projects

Contribution mechanisms

A key consideration for any project is the mechanism by which they manage
the provenance of incoming code contributions. Open source projects deal with
these concerns differently. Some projects adopted a developer certificate of
origin, others require a contributor license agreement, while many projects
(particularly smaller ones) do not use formal contribution provenance mechanisms.

DCO sign-off process

The Developer Certificate of Origin (DCO) sign-off process ensures that
every single line of code accepted into a project has a clear audit trail. It
is a developer’s certification that they have the right to submit code for
inclusion into the project. The Linux kernel process for instance requires all
contributors to sign-off their code, which indicates the contributor certifies
the code as outlined in the Developer Certificate of Origin. The signature
communicates that the contributor has created or received the contribution
under an appropriate open source license that allows it to be incorporated
into the project’s code base under the license indicated in the file. The DCO
establishes a chain of people who take responsibility for the licensing and
provenance of contributions to the project.

Contributor license agreement (CLA)

Some projects require either developers or their employers signing a CLA.
Unlike the DCO, the text of CLAs can vary significantly from project to
project, so the terms of any given CLA may have different effects. The
purpose of a CLA is to ensure that the guardian of a project’s outputs has
the necessary ownership or grants of rights over all contributions to allow
them to distribute under the chosen license. In some cases, this even
means that the contributor will grant an irrevocable license, which allows
the project to distribute the contribution as part of the project.

Software Package Data Exchange license format

Many of these open source projects have code licensed under different

https://developercertificate.org

12

Determining the True Openness of Open Source Projects

licenses. Some projects are already adopting the SPDX format as a method
to communicate the license information. One openness indicator could be
how well a project makes explicit the various licenses for its different pieces
of code via the standardized SPDX short-form license identifiers in every
file. Additionally, a project can provide detailed license, copyright and other
related information in a standardized, open, human-readable and machine-
readable format by providing a bill of materials as an SPDX document.

DOCUMENTATION
An open source project can provide different types of documentation to help
both users and developers of its community. Historically, documentation
has been an area that is lacking and requires improvements. However, this
is changing and many of the projects, especially those hosted within an
open source foundation, have great documentation that cover all areas
of the projects. In the following subsections, we examine three core areas
where documentation is essential.

•	 Project
•	 Mission
•	 Governance
•	 Community structure
•	 Release cadence
•	 Roadmap and priorities
•	 Use cases
•	 FAQs

•	 Documentation targeted for users:
•	 User guide and tutorials
•	 API guide
•	 Architecture overview
•	 Installation guide
•	 Feature request process
•	 Experience sharing section

•	 Documentation targeted for developers:
•	 Detailed architecture and mapping to code sub-systems/

services when applicable

https://spdx.org

13

Determining the True Openness of Open Source Projects

•	 Development process
•	 How to get involved
•	 Guidelines for participation
•	 Feature request process
•	 Patch submission process
•	 Signed-off-by process, when applicable
•	 Developer guides and tutorials
•	 API guide

14

Determining the True Openness of Open Source Projects

Chapter 2
RECOMMENDED BEST PRACTICES

In this chapter, we highlight some of the recommended practices that support
and enable open source projects, and also provide some practices to avoid.

Recommended Practices Practices to Avoid

License OSI-approved open source license
or FSF free/libre license.

• No license.
• Unclear or conflicting licensing

terms.
• Vanity license.
• Create a new license.

Governance A governance model that gives
equal footing to all current and
future contributors to the project.
Open source projects with an open
and transparent governance model
have better chances to grow, have
a healthy environment, and attract
developers and adoptees.

• No governance.
• Biased governance that is

dominated by a given party,
usually the founder of the project.

Access • Project resources are accessible
to any users or developers
interested in the project.

• Anyone can participate in the project.
• Any participant can earn

committer rights by way of
contribution and build trust with
the project’s community.

• Limited access based on
sponsorship level or other factors.

Processes • Documented processes for
requesting a feature, reporting
bugs, submitting code, etc.

• Code is only committed through
the project’s defined process for
incoming contributions.

• All code goes through a peer
review process.

• Ad-hoc or poorly designed
processes.

• Processes that keep changing or
are stale and need improvements
in order to scale and
accommodate the development
status of the project.

• Processes that are not followed or
respected.

15

Determining the True Openness of Open Source Projects

Recommended Practices Practices to Avoid

Processes
(Continued)

• The process to become a committer
/ maintainer / reviewer is enforced
by the project for consistency.

• The project’s community revises
its processes based on incoming
feedback to ensure they continue
to meet the project’s needs as it
grows and scales.

Development • Responsibility for development
allocated to the individuals with
the best capacity to deliver.

• The project enforces quality
standards when merging code.

• The project implements multiple
levels of review before entering
final release.

• Peer review is mandatory and public.

• Peer review is not enforced.
• Pedigree of incoming code is not

verified.
• Project does not have a sign-off

process or equivalent.
• Contributors do not follow sign-off

process while the code is still
merged.

Community • Accessible to newcomers - open
development generally strives for
inclusiveness.

• Focused on visibility with emphasis
on open decision-making
processes and communication.

• Self-organizing where individuals
contribute in their areas of interest,
or those of their employers.

• Resilient to organizational change
given that leadership is earned with
experience. If individuals cease
to participate, there are others to
take their place.

• Little or no help or support
available to new developers
entering the project in terms of
guidance, documentation, and
mentorship.

• Obscure decision-making
process.

Community
Structure

• Meritocracy drives advancement
and acceptance. Contributors
who provide the most value to the
community are granted project
leadership roles.

• The project welcomes newcomers
who have freedom and access to
participate in public discussions,
development, and testing.

• Structure biased towards a
certain company, coalition, or
commercial interests.

• No clear path for developers
on how to be promoted to a
committer, reviewer, or maintainer.

16

Determining the True Openness of Open Source Projects

Recommended Practices Practices to Avoid

Community
Structure
(Continued)

• The project’s hierarchy is scalable
because it consists of maintainers
who oversee specific bodies of
code in levels that can be added
or removed as needed based on
the size of the community.

• Anyone can submit patches, and
both developers and users are
involved in the testing process.
The roles of developer and user
are closely integrated in open
source development, allowing
users to have a more direct path
to influencing the project.

Releases • To protect certain users from the
instability of rapidly developing
software, projects provide stable
releases that restrict the addition
of experimental features to provide
a reliable version that better supports
use cases that rely on stability.

• Weekly or monthly stable releases
provide users and developers
with the newest functionality after
it has been tested

• Long-term stable versions extend to
longer periods and often only include
security patches and bug fixes.

• Unclear structure of releases and
branches.

• Undocumented release
processes.

• Documented processes but
uncommunicated and/or hard to
locate on the wiki or the web site
of the project.

Release
Cadence

• The project has a defined
cadence for its releases with set
goals per release.

• The release cadence and the goals
to be met by each release are
known to all projects stakeholders.

• No release cadence
• Cadence is not suitable or does

not meet the needs of the end
users.

Derivatives Open source license provides the
freedom to create and distribute
derivatives.

Non-OSI approved license or non
FSF free/libre license that limits
these freedoms.

Communication
tools

Such tools include mailing lists
and IRC, among others, and are
available and open to anyone
wishing to participate in the project.

• Restricted access to some of the
communication tools.

• Discussions happening in private
chat rooms or private mailing lists.

17

Determining the True Openness of Open Source Projects

Recommended Practices Practices to Avoid

Transparency Open source communities must
be as transparent as possible to
attract new participation.
• Contribution transparency.
• Peer review transparency.
• Transparency of discussions.
• Transparency of promotion to

committer or maintainer.

• Ambiguous decision-making
process.

• Favoritism in code acceptance
based on origin and not quality of
code and result of peer review.

• Discussions with direct impact
on project (architecture,
development) happen in private
with some rare exceptions of
communication that for instance
relate to the distribution of pre-
disclosure security vulnerabilities.

Development
tools

Available and open to all. • Limited access.
• Dependencies on proprietary

tools prohibiting non-corporate
contributors from participating in
the development efforts.

Documentation Availability of documentation
covering architecture, APIs,
installation guides, developer
guides, development processes,
participation guides, tutorials, etc.

• No documentation (source code
is documentation)

• Poor documentation.
• Unmaintained documentation.

18

Determining the True Openness of Open Source Projects

Chapter 3
CHARACTERISTICS OF A GREAT OPEN
SOURCE COMMUNITY

Great open source communities may differ in what they work on and how
they implement the structure and processes of their projects, but they share
several characteristics:

•	 Community members work together for a common goal with a high
sense of cooperation.

•	 Project participants feel free to express their opinions, share their
ideas, and engage with other project members.

•	 Community members chose their maintainers and committers
based on their expertise, level of contributions, and thought
leadership. The community maintains a clear process for the
selection criteria.

•	 The project’s community is accessible to newcomers as users of the
project or developers who wish to participate and contribute. Open
development strives for inclusiveness.

•	 Great open source communities are very transparent with a strong
emphasis on open decision-making processes and communication.

•	 Great open source communities are resilient to organizational
change. Leadership is earned with experience and with the approval
and consensus from community members. If individuals cease
to participate in the project, there are others to take their role with
minimal disruptions to the project and a clear process to guide the
selection of the new leaders (maintainers).

•	 Great open source communities work to ensure that those who
fall in minority populations are not treated differently. These
communities give a voice to minority populations through frequent

19

Determining the True Openness of Open Source Projects

consultation with members of those societies about how the
community can improve to meet their needs better.

•	 Great communities do not limit contributions to just code and offer
a wide range of contribution opportunities for non-coders in areas
such as testing, documentation, communication, marketing efforts,
and many more.

•	 Great open source communities foster a feeling of connection and
collaboration among its members by providing plenty of opportunities
for interaction. They create a feeling of connection that makes
members more motivated to work towards the projects’ goals.

A healthy and strong open source community is inclusive and diverse.
Many open source projects are working to increase their inclusiveness, the
diversity of their contributors, and to encourage new participation.

20

Determining the True Openness of Open Source Projects

Chapter 4
CALL TO ACTION

This chapter focuses on the question of how we can do a better job with
respect to openness. Three primary players come to mind:

•	 Open source developers – create new open source projects,
contribute to existing projects.

•	 Open source leadership – on behalf of their company, they
encourage and support the participation of internal engineers to
open source collaborative projects; they support stakeholders
and compliance teams in decisions to open source internal code;
they foster discussion with their peers at other companies; they
investigate opportunities to create new open source projects and
collaborations.

•	 Open source foundations – such foundations host open source
projects within a neutral forum, create new open source projects in
support of their members, mentor developers, advise projects on
policy issues, etc.

We believe these three key roles are instrumental in shaping the openness
on any open source project. In the following table, we identify some of the
actions these players can exert in the various areas that would help an open
source project get to a higher level of openness.

21

Determining the True Openness of Open Source Projects

Open Source
Developer

Open source
Leadership

Open Source
Foundation

License • Avoid projects with
vanity or unclear
licenses.

• Choose an OSI-
approved license for
their own project(s).

• Communicate the
benefits of using an
OSI-approved open
source license to
colleagues.

• Understand the
license choice of
your project or
the license of the
project(s) you want
to participate in.

• Open source code
using OSI-approved
licenses only.

• Mentor company
executive on the
adoption hurdles a
vanity license poses.

• Educate hosted
projects on the right
choice of license for
their projects.

• Support selection
of an OSI-approved
license.

• Provide the ability
for companies
to collaborate on
projects in a neutral
environment.

• Act as an agent for
the project, receive
funds from sponsoring
companies, handle
trademarks, provide
infrastructure as
necessary, support
with developer
relationships, industry
and technical events,
driving awareness, etc.

Governance Understand and
participate in the
project’s open
governance
processes and be an
advocate for it.

When establishing new
open source projects
with industry partners,
aim for a balanced
governance that gives
equal footing to all
participants – a
governance that
welcomes contributors
and supports a
diverse community.

• Advise hosted
projects on best
open source
governance models.

• Help projects to
implement their
governance.

Access Foster the culture of free and equal access for everyone.

Development • Follow processes.
• Recommend

improvements.

• Support new projects in creating a number
of processes before they launch. These will
change over time but it is a huge benefit to have
something in place when projects kick off.

• Recommend projects document their processes.

22

Determining the True Openness of Open Source Projects

Open Source
Developer

Open source
Leadership

Open Source
Foundation

Community
Structure

• Support the right
structure for the size
of their project.

• Recommend
improvements
based on their own
experience
participating in the
project.

• Set the project governance and structure with
growth and scale in mind.

• Adopt practices that worked well in other
projects.

• Build in the ability to change as the project
evolves.

Releases • Follow the release
cadence when
committing to
deliver code for a
given release.

• Evangelize the
importance of
rhythmic releases.

• Provide
documentation for
their contributions
to support
good release
documentation.

• Promote a given release cadence.
• Promote the need for release documentation.
• Promote the need for a stable release.
• Promote experimentation until the project

figures out the right cadence and speed.

Architecture Design and
implement with scale
and growth in mind.

Promote a flexible and modular architecture.

Communication
tools

• Avoid private
discussions.

• Avoid participating
in a closed
communication
medium (ML, IRC,
etc.).

• Be inclusive in your
communication.

• Ensure that all newly launched or hosted
projects offer communication tools used by
typical open source projects and are platform
agnostic.

• Tools are available for anyone to use them
and have access to all of the project’s
communication.

Transparency • The project has criteria to promote developers to key positions.
• The project has a process that leads to making decisions.
• The project has a process to accept incoming code from known entities.
• Open communication channels.
• Clear governance model.

23

Determining the True Openness of Open Source Projects

Open Source
Developer

Open source
Leadership

Open Source
Foundation

Development
tools

• Use and promote
the best open
source tools
available to support
the project’s
development.

• Mentor newcomers
into the project
on the use of the
development tools
adopted by the
project.

• For any new open
source projects
your company
creates, reply
on open source
development tools
that are accessible
to everyone.

• Ensure that all
hosted project rely
on development
tools that are free
and available to
everyone.

Documentation • Document your
code.

• Contribute
documentation
explaining
architectural
decisions, code
structure, specific
modules or
features you have
implemented, etc.

• Review
documentation
contributed by
others; provide
feedback and ideas
to improve on them.

• Provide good
headers within
source code file.

• Respect the
project’s coding
practices and
guidelines.

• Prioritize documentation as a parallel track to
source code development.

• Incentivize developers to provide
documentation.

• Sponsor interns or technical writers to create
documentation for open source projects.

• Ensure proper documentation that offer
licensing and copyright information.

24

Determining the True Openness of Open Source Projects

Chapter 5
CLOSING
The open source methodology has proved itself over the past several decades
that it is better to create software through collaboration and a transparent
development process. Open source projects and initiatives provide companies
with proven, successful models to collaborate with other companies, create
new technologies, and support the development of new communities.
Companies across many industries are creating Open Source Program Offices
and staffing them with highly skilled individuals to help them drive open source
software leadership and gain a critical footprint in this external R&D ecosystem.
However, not all open source projects are equally open.

In this paper, we attempt to lay out best practices for open source openness
and provide various indicators that may help you gauge the openness of an
open source project. Some of these openness perspectives are visible from
an external perspective and others are experienced more as a participant in
the project.

The paper also provided recommendations on best–case openness scenarios
for each of these indicators. If you are an open source developer, an open
source leader in your organization, or a leader in an open source foundation,
you can enable several best practices to ensure increased openness,
transparency, diversity and inclusion in open source projects.

We hope this paper becomes a trigger for new conversations in open source
projects on how to be more open, more transparent, and more inclusive.

25

Determining the True Openness of Open Source Projects

References
Linux Foundation Enterprise Open Source Guides

https://www.linuxfoundation.org/resources/open-source-guides/

Software Package Data Exchange®	

https://spdx.org/

The Software Package Data Exchange® (SPDX®) specification is a
standard format for communicating the components, licenses and copyrights
associated with software packages.

TODO Group

http://todogroup.org/

The TODO Group is a collection of tech companies who collaborate on the
policies, practices, and pragmatics of running an open source program
office. Their collaboration is managed as a community project under the
Linux Foundation, and they are a resource to companies who are just
starting to get their open source programs established.

CHAOSS Project

https://chaoss.community/

The Community Health Analytics Open Source Software project (CHAOSS)
is a new Linux Foundation project focused on creating the analytics and
metrics to help define community health. The project aims to establish standard
implementation-agnostic metrics for measuring community activity, contributions,
and health, which are objective and repeatable, and to produce integrated
open source software for analyzing software community development.

https://www.linuxfoundation.org/resources/open-source-guides/
https://spdx.org/
http://todogroup.org/
https://chaoss.community/

26

Determining the True Openness of Open Source Projects

ACKNOWLEDGMENTS
The author would like to express his sincere appreciation to Jessica
Wilkerson (Director of Cybersecurity Research at the Linux Foundation),
Christian Paterson (Head of Open Source Governance at Orange), Nithya
Ruff (Head of Open Source Practice at Comcast) and Brian Warner
(Program Director at the Linux Foundation) for their valuable reviews and
feedback. The author is also especially grateful for feedback received from
Steve Winslow (Director of Strategic Programs at the Linux Foundation)
and the CHAOSS project with notable mention to Matt Germonprez, Kevin
Lumbard and Georg Link. This paper has benefited immensely from the
experiences and contributions of all reviewers.

FEEDBACK
Suggestions for improvement will be appreciated. Please send comments
to the author directly.

DISCLAIMER
The opinions expressed in this paper are solely the author’s and do not
necessarily represent the views of current or past employers. The author
would like to apologize in advance for any error or omission and is open for
feedback and updates.

http://www.ibrahimatlinux.com/contact.html

27

Determining the True Openness of Open Source Projects

ABOUT THE AUTHOR

Ibrahim Haddad (Ph.D.) is the
Executive Director of the LF AI
Foundation that supports and
sustains open source innovation
in artificial intelligence, machine
learning, and deep learning.
He previously served as Vice
President of R&D and Head of
the Open Source Division at
Samsung Electronics. At Samsung,
he established the global open
source division, set and executed
Samsung’s open source strategy,
launched internal and external R&D

collaboration projects, supported M&A and corporate VC activities, and
represented Samsung in various foundations and consortia. Throughout
his career, Haddad held several technology roles at Ericsson Research,
the Open Source Development Lab, Motorola, Palm, Hewlett-Packard,
and the Linux Foundation. He graduated with Honors from Concordia
University (Montréal, Canada) with a Ph.D. in Computer Science, where he
was awarded the J. W. McConnell Memorial Graduate Fellowship and the
Concordia University 25th Anniversary Fellowship.

Twitter: @IbrahimAtLinux
Web: IbrahimAtLinux.com
LinkedIn: linkedin.com/in/ibrahimhaddad

https://lfai.foundation
https://lfai.foundation
https://twitter.com/ibrahimatlinux
http://IbrahimAtLinux.com
http://linkedin.com/in/ibrahimhaddad

