
Free and Open Source
Software Compliance
The Basics You Must Know

JUNE 2010
By Ibrahim Haddad, Ph.D.

2

Executive Summary
This white paper is a first in a series that will focus on the various practical aspects

of ensuring free and open source software (FOSS) compliance in the enterprise. This

paper provides basic discussion on the following topics:

•	 The changing business environment moving to a multi-source development model

•	 The	objectives	of	compliance	and	the	benefits	resulting	from	having	a	successful	compliance	program

•	 The consequences of non-compliance with the licenses of free and open source software

•	 The compliance failures that can occur, how to avoid them and prevent them from happening in the
future

•	 The lessons learned from the various non-compliance cases with emphasis on the positive learnings

A Changing Business Environment
Traditionally, platforms and software stacks were implemented using proprietary

software and consisted of various software building blocks that came from different

3rd party software providers with negotiated licensing terms (Figure 1). The business

environment was predictable and companies mitigated potential risks through license

and contract negotiations with the software vendors.

Applications
(3rd Party Commercial / Proprietary)

•	 Commercial licenses are negotiated

•	 There is a limited number of licenses

•	 The business environment is very predictable

•	 Companies ensure contractual protection through their
commercial contracts and licenses

•	 There is a clear separation between the different components
and their providers

•	 Risks are mitigated through license negotiation

•	 The providers of each software component are known

Middleware
(3rd Party Commercial / Proprietary)

Operating System
(3rd Party Commercial / Proprietary)

Drivers
(3rd Party Commercial / Proprietary)

H/W Chips
(Multiple Vendors)

FIGURE 1. ILLUSTRATION OF THE ARCHITECTURE OF A TRADITIONAL SOFTWARE PLATFORM THAT RELIES ON
PROPRIETARY AND 3RD PARTY COMMERCIALLY- LICENSED SOFTWARE BUILDING BLOCKS

Free and Open Source Software
Compliance The Basics You Must Know

By Ibrahim Haddad Ph.D.

3

With time, companies started to incorporate FOSS into their platforms for the different advantages it
offers such as technical merit, fast time-to-market and the ability to customize source code to own needs.
The current most adopted development model is the multi-source development model (Figure 2). In this
model, software components can consist of source code origination from different sources and licensed
under different licenses; for instance, software component A can include proprietary source code in
addition to 3rd party proprietary source code, while software component B can include proprietary source
code in addition to source code from an open source project. Figure 2 highlights the combinations of
incoming source code sources.

Following this model, the source code built into a product is incoming from various sources:

•	 Proprietary, developed by the company building the product or by one of its acquired subsidiaries

•	 3rd party commercial, developed by 3rd party software providers and received by the company
building the product under a commercial license

•	 FOSS, developed by the FOSS community and received by the company building the product under
a FOSS license

•	 A combination of any of the above sources

FIGURE 2. MULTI-SOURCE DEVELOPMENT MODEL

Free and Open Source Software Compliance:
The Basics You Must Know

Integration
+

QA
+

Commercialization

Final Commercial Product

3rd Party Commercial

Proprietary

FOSS

Proprietary + FOSS +
3rd Party Commercial

Proprietary + FOSS
Proprietary +

3rd Party Commercial

3rd Party Commercial + FOSS

4

With the introduction of FOSS to what once were pure proprietary software stacks, the business
environment diverged from familiar territory and corporate comfort zones (Figure 3). The licenses of
FOSS are not negotiated agreements. There are no contracts signed with the software providers (i.e.,
FOSS developers). Companies must now deal with dozens of different licenses, and hundreds or even
thousands of licensors and contributors. As a result, the risks that companies used to manage through
license negotiations are now managed through compliance and engineering practices.

Applications
(3rd Party Commercial, Proprietary, FOSS)

•	 Licenses are not negotiated; they are imposed

•	 There are potentially tens of licenses involved

•	 The business environment is not as predictable as in a
purely commercial environment

•	 There are potentially thousands of contributors to the various
FOSS projects used

•	 The origin of some of the components may not be clear

•	 Risks are mitigated through design, engineering practices
and compliance

Middleware
(3rd Party Commercial, Proprietary, FOSS)

Operating System
(3rd Party Commercial, Proprietary, FOSS)

Drivers
(3rd Party Commercial, Proprietary, FOSS)

H/W Chips
(Multiple Vendors)

FIGURE 3. ILLUSTRATION OF THE ARCHITECTURE OF A MODERN SOFTWARE PLATFORM SHOWING THE
PROLIFERATION OF FOSS INSIDE EACH OF THE PLATFORM SOFTWARE BUILDING BLOCKS

Enter FOSS Compliance
FOSS initiatives and projects provide companies with a vehicle to accelerate innovation

through collaboration with the global community of FOSS developers. However,

accompanying the benefits of teaming with the FOSS community are important

responsibilities: Companies must ensure compliance with applicable FOSS license

obligations.

FOSS compliance means that users of FOSS must observe all the copyright notices and satisfy all the
license obligations for the FOSS they use. In addition, companies using FOSS in commercial products,
while complying with the terms of FOSS licenses, want to protect their intellectual property and that of 3rd
party suppliers from unintended disclosure.

Compliance helps achieve four main objectives:

1. Comply with FOSS licensing obligations

Free and Open Source Software Compliance:
The Basics You Must Know

{
In fact, in nearly every GPL enforcement case that I’ve worked on in my career, the fact
that infringement had occurred was never in dispute. The typical GPL violator started
with a work under GPL, made some modifications to a small portion of the codebase,
and then distributed the whole work in binary form only. It is virtually impossible to act
in that way and still not infringe the original copyright.

– Bradley M. Kuhn, Policy Analyst and IT Director, Software Freedom Law Center
(11/09/2009, http://www.softwarefreedom.org/blog/?tag=infringement) }

5

2. Facilitate effective usage of FOSS in commercial products

3. Comply with 3rd party software supplier contractual obligations

4. Protect commercial product differentiation

Benefits	of	Ensuring	FOSS	Compliance
There	exist	several	side	benefits	to	achieving	compliance	that	includes:

•	 Gaining a technical advantage since compliant stacks are easier to service, upgrade, and test

•	 Gaining	an	increased	understanding	of	the	benefits	of	FOSS	and	how	it	impacts	your	organization

•	 Gaining an increased understanding of the costs and risks associated with using FOSS

•	 Gaining an increased knowledge of available FOSS solutions

•	 Building a relation with the FOSS community and FOSS organization through involvement with FOSS
projects and participation in FOSS events

•	 Better corporate readiness in preparation for possible acquisition, sale, new product or service
release, where compliance assurance is mandatory before the completion of any of these
transactions.	Furthermore,	there	is	the	added	advantage	of	verifiable	ensured	compliance	in	dealing	
with	OEMs	and	downstream	vendors

•	 Improving your overall FOSS strategy using the results from your compliance program

Failure to Comply
Several failure and consequently to the failure of complying with the FOSS license

obligations, for instance, in regard to:

•	 Recognition of:

1. Attribution notice: An attribution notice is a notice included in the product documentation that
acknowledges the identity of the original authors of the FOSS included in the product.

Example of an attribution notice (for Webkit1):

Contributors to the WebKit, WebCore and JavaScriptCore projects include: Alex Mathews, Alexander Kellett, Alexey
Proskuryakov, Allan Sandfeld Jensen, Alp Toker, Anders Carlsson, Andrew Wellington, Antti Koivisto, Apple Inc.,
Bjoern Graf, Brent Fulgham, Cameron Zwarich, Charles Samuels, Charlie Bozeman, Christian Dywan, Collabora Ltd.,
Cyrus Patel, Daniel Molkentin, Daniel Veillard, Dave MacLachlan, David Smith, Dawit Alemayehu, Dirk Mueller, Dirk
Schulze, Don Gibson, Enrico Ros, Eric Seidel, Frederik Holljen, Frerich Raabe, Friedemann Kleint, George Staikos,
Google Inc., Graham Dennis, Harri Porten, Henry Mason, Hiroyuki Ikezoe, Holger Hans Peter Freyther, International
Business Machines Corporation, James G. Speth, Jan Michael C. Alonzo, Jean-loup Gailly, Jon Shier, Jonas Witt,
Julien Chaffraix, Justin Haygood, Kevin Ollivier, Kevin Watters, Kimmo Kinnunen, Kouhei Sutou, Krzysztof Kowalczyk,
Lars Knoll, Luca Bruno, Lucent Technologies, Maksim Orlovich, Malte Starostik, Mark Adler, Martin Jones, Matt Lilek,
Michael Emmel, Netscape Communications Corporation, Nicholas Shanks, Nikolas Zimmermann, Nokia Corporation,
Nuanti Ltd., Oliver Hunt, OpenedHand, Peter Kelly, Pioneer Research Center USA, Inc., Rob Buis, Robin Dunn,
Ronald Tschalär, Samuel Weinig, Simon Hausmann, Staikos Computing Services Inc., Stefan Schimanski, Symantec
Corporation, The Karbon Developers, Thomas Broyer, Tim Copperfield, Tobias Anton, Tony Chang, Torben Weis,

Free and Open Source Software Compliance:
The Basics You Must Know

6

Trolltech ASA, University of Cambridge, Vaclav Slavik, Waldo Bastian, Xan Lopez, Zack Rusin, mozilla.org.

2. License notice: A license notice is a notice that acknowledges the license terms and conditions of
the FOSS included in the product.

Example of a license notice (for rsync2):

This software package is licensed under the GPL version 2. See COPYING file for the full GPL license text.

or

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version. You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA

3. Copyright	notice:	A	copyright	notice	is	an	identifier	placed	on	copies	of	the	work	to	inform	the	
world of copyright ownership.v

Example of a copyright notice (for the libpcap3 library):

Copyright © The Internet Society (2004). All Rights Reserved.

4. Modification	notice:	A	modification	notice	is	a	notice	of	the	modifications	made	to	the	source	code	
in	a	change	log	file,	such	as	those	required	by	the	GPL	and	LGP.

Example of a modification notice:

/*

* Date Author Comment

* 01/05/2010 Ibrahim Haddad Fixed memory leak in getnext()

*/

•	 Making inappropriate or misleading statements in the product documentation or product
advertisement material

•	 Making available:

1. The software source code that corresponds to the binaries distributed in the shipping product. In
some instances, companies may not inform users on how they can obtain the source code for
software packages included in the product. This is often referred to as written offer.

Example of a written offer to provide the source code:

To obtain a copy of the source code being made publicly available by FooBar, Inc. related to software used in this
FooBar product, you can visit http://opensource.foobar.com or send your request in writing by email to opensource@
foobar.com or by snail mail to:

FooBar Inc., Open Source Program Office

Street Address

City, State, Postal Code

Country

1 Available from http://webkit.org
2 Available from http://samba.anu.edu.au/rsync
3 Available from http://www.tcpdump.org

Free and Open Source Software Compliance:
The Basics You Must Know

7

The build scripts needed to compile the source code.

Table 1 illustrates the most common compliance failures that occur during the software development
process, a brief description of the failure and how it occurs, in addition to measures that a company can
implement to avoid and prevent such failures from happening again.

TABLE 1. EXAMPLES OF COMPLIANCE FAILURES AND HOW TO AVOID THEM

FAILURE	TYPE	AND	DESCRIPTION POLICIES	AND	PROCEDURES	TO	AVOID	SUCH	
FAILURES

Unplanned or unapproved inclusion of FOSS
into proprietary or 3rd party code or vice versa
(i.e. failure to submit an Open Source Review
Board (OSRB) request form):

These failures occur during the software
development process when engineers add FOSS
code into proprietary or 3rd party source code
without having the necessary required approval
from the OSRB.

These failures can be discovered by:

•	 Scanning4 the source code for possible
matches with FOSS source code.

•	 Implementing and running a bill of materials5
(BoM) difference tool6 to identify source code
modifications	at	product	level	and	component	
level.

•	 Offer training to bring awareness to
compliance issues and to the different types
and categories of FOSS licenses and the
implications of including FOSS source code in
proprietary or 3rd party source code without
proper approval.

•	 Conduct regular source code scanning all
the source code in the code base to discover
source code additions that do correspond to a
compliance ticket7.

•	 Mandate	engineers	to	fill	out	OSRB	forms8
to inform the OSRB of their intention to use
FOSS source code in a proprietary or 3rd
party software, or as a standalone.

•	 Include compliance goals in the employees
performance review. Following this method,
failure to abide by the compliance policies will
affect directly the employee’s bonus reward;
as a result, engineers will have additional
incentives to ensure compliance.

•	 Mandate that for a FOSS to be accepted into
the build system, it must have a corresponding
OSRB form.

4 The are several commercial and FOSS tools that offer the capabilities of scanning source code and identifying what FOSS has
been discovered in the source code base. We will be discussing these tools in a future paper.
5 The	bill	of	material	(BoM)	is	the	list	of	software	components	included	in	the	final	shipped	product.
6 The BoM difference tool takes as input two BoMs, computes the differences, and outputs the changes found between the two
BoMs. The output highlights new software components that entered the source code base, retired software components that are no
longer	used,	and	software	components	that	were	modified.
7 A	ticket	in	this	context	is	similar	to	task	in	a	project	management	tool.	Each	FOSS	must	have	a	corresponding	compliance	ticket.	
The	goal	is	to	ensure	that	for	any	specific	FOSS,	the	company	knows	how	this	FOSS	is	being	used,	in	which	product(s)	it	is	
included, and has a plan in place to meet the license obligations.
8 The	form	is	a	questionnaire	that	engineers	fill	out	and	submit	to	the	Open	Source	Review	Board	(OSRB)	requesting	approval	to	
use	the	FOSS	in	question	in	a	particular	product.	The	OSRB	reviews	requests	for	use,	modification,	and	distribution	of	FOSS	and	
determines	approval.	In	addition,	the	OSRB	serves	as	steering	committee	to	define	and	manage	the	company’s	FOSS	strategy

Free and Open Source Software Compliance:
The Basics You Must Know

8

Linking9 of FOSS into proprietary or 3rd party
commercial source code (or vice versa):

This failure occurs when linking software (FOSS,
proprietary,	3rd	party)	that	have	conflicting	and	
incompatible10 licenses, or if the FOSS has a
license with a viral effect11.

This type of failure can be is discovered using
a dependency tracking tool12 that allows you to
discover linkages between different software
components.

Offer training to avoid linking software components
with	conflicting	licenses	or	to	those	software	
components whose license has a viral effect

•	 Continuously run the dependency tracking tool
over the build environment to verify linkages
and	to	flag	any	issues.

•	 Mandate engineers to disclose linkage method
and list of linked components as part of the
OSRB form. This will provide the OSRB an
early warning of any possible linkage problem.

Failure to publish source code:

This failure occurs when using FOSS in a
commercial product and not publishing the FOSS
source	code	and	modifications	made	to	it	as	part	
of meeting license obligations (for instance when
the FOSS is licensed under the GPL).

•	 Add a checklist item for source code
publishing in the product release.

Failure to provide the right source code
version:

This failure occurs when making available the
wrong version of the source code used to compile
into a FOSS binary work that has been distributed
as part of a product.

•	 Add	a	verification	step	into	the	compliance	
process to make sure you are publishing the
exact version of source code that corresponds
to the distributed binary in the product.

Failure to provide the modifications applied to
the original FOSS:

This failure occurs when the company fails to
publish	and/or	mark	the	modification	introduced	to	
the FOSS that was distributed as part of a product.

•	 Add a milestone in the compliance process
to	verify	that	modified	source	code	has	been	
marked as such.

•	 Conduct source code inspections before
releasing the source code.

•	 Offer training to engineers to ensure they
modify the change logs of software that will be
released to the public.

9 Linkage in this context refers to dynamic and static method s of linkage.
10 License compatibility is a term that refers to the problem encountered when combining source code originating from different
software components licensed under incompatible licenses making it impossible to combine the source code to create a new
software component. For more information on the concept of license compatibility, please refer to http://www.fsf.org/licensing/
licenses/
11 The term “viral effect” is a commonly and informally used term to describe the effect that copyleft licenses have where any works
derived from a copyleft work must themselves be copyleft when distributed.
12 The dependency mapping tool (also called dependency analysis tool or dependency tracking tool) takes as input the name of a
software component and outputs the list of libraries linked to that software component via the dynamic and static linkage methods.

Free and Open Source Software Compliance:
The Basics You Must Know

9

Failure to take the FOSS training:

This failure occurs when employees neglect to
take the mandatory FOSS training. As a result,
they continue to be unaware of the company’s
policies and procedures with respect to FOSS and
compliance.

•	 Mandate engineers to take the FOSS training
by	a	specific	date.

•	 Ensure	that	the	FOSS	training	is	part	of	the	
employee’s professional development plan.

Failure to audit the source code:

This failure occurs when the OSRB fail to audit the
source code incoming into the build system.

•	 Conduct periodic source code scans/audits.

•	 Ensure	that	source	code	auditing	is	a	
milestone in the iterative development
process.

•	 Provide adequate resources to the OSRB to
ensure that the compliance activities do not fall
behind the development activities

Failure to resolve the audit findings:

This	failure	occurs	when	the	OSRB	fail	to	finalize	
the	audit	results	of	any	specific	component,	
produce an audit report and attach it to the
compliance	ticket	for	that	specific	component.

•	 Implement a policy in the compliance
management system that does not allow a
compliance ticket to be closed if it has open
sub-tasks or open issues.

Lessons Learned From Compliance Disputes
In the past few years, several cases of non-compliance found their way to the public.

By examining these cases, we can extract the following lessons:

Lesson	#1:	Ensure	Compliance	Prior	to	Product	Shipment
One common result from all the incompliance cases was that the company with the violation had to
comply with the license. Therefore, it is recommended to ensure compliance prior to product ship.

It is important to acknowledge that compliance is not just a legal exercise. All facets of the companies
are typically involved in ensuring proper compliance and contributing to the end-to- end management of
FOSS. This includes establishing and maintaining consistent compliance policies and procedures, and
ensuring that the licenses of all the software components in use (proprietary, 3rd party and FOSS) can
co-existence well before shipment. To that effect, companies need to implement an end-to-end FOSS
management infrastructure that will allow them to:

•	 Identify all FOSS used in products

•	 Perform architectural reviews to verify if and how FOSS license obligations are extending to
proprietary and 3rd party software components

•	 Collect the applicable FOSS licenses for review by the legal department

Free and Open Source Software Compliance:
The Basics You Must Know

10

•	 Develop	FOSS	use	and	distribution	policies	and	procedures

•	 Mitigate risks through architecture design and engineering practices

We will be discussing the topic of implementing a company-wide compliance program in a future paper.

Lesson	#2:	Non-Compliance	is	Expensive
All of the disputes reached a settlement agreement that included one or more of the below mentioned
terms:

•	 Company to take necessary action to become compliant

•	 Company	to	appoint	a	compliance	officer	to	monitor	and	ensure	GPL	compliance

•	 Company to notify previous recipients of the product that the product contains GPL code and inform
them of their rights to receive a copy of the source code

•	 Company to publish licensing notice on their website

•	 Company to provide additional notices in product publications

•	 Company to make available the complete and corresponding source code used in their product freely
available on its website

•	 Company to cease binary distribution of the FOSS in question until it has published complete
corresponding source code on its web site

•	 Company	to	pay	an	undisclosed	amount	of	financial	consideration	to	the	plaintiffs

The FSF Compliance Lab: The Free Software Foundation Compliance Lab handles all
licensing-related issues for FSF. They serve the free software community by providing the
public	with	a	“knowledge	infrastructure”	surrounding	the	GNU	GPL	and	free	software	licensing,	
and enforcing the license on FSF-copyrighted software. (http://www.fsf.org/licensing)

Furthermore, the companies whose compliance has been successfully challenged have incurred costs
that included:

•	 Discovery	and	diligence	costs	in	response	to	the	compliance	inquiry,	where	the	company	had	to	
investigate the alleged inquiry and perform due diligence on the source code in question

•	 Settlement costs with the plaintiffs

•	 Outside and in-house legal costs

•	 Possible damage to brand, reputation, and credibility

Free and Open Source Software Compliance:
The Basics You Must Know

11

Free and Open Source Software Compliance:
The Basics You Must Know

In almost all cases, the failure to comply with the FOSS license obligations has also resulted in public
embarrassment, negative press and damaged relationships with some of their customers, suppliers and
most notably the FOSS community (their software provider) and FOSS organizations.

Lesson #3: Relationships Matter
For companies using FOSS in their commercial products, it is recommended to create and maintain a
good relationship with the FOSS community. The community provides such companies with source code,
technical support, testing, and documentation. Therefore, it is an expectation that these companies honor
the licenses of the FOSS components included in their products. Taking steps in this direction, combined
with open and honest relationship, is a great asset to have and maintain especially in the event that a
company get into a compliance “oops”.

Practical Guide to GPL Compliance: On August 26, 2008, the Software Freedom Law
Center	published	a	guide	on	how	to	be	compliant	with	the	GNU	General	Public	License	(GPL)	
and related licenses. The guide focuses on avoiding compliance actions and minimizing the
negative impact when enforcement actions occur. (http://softwarefreedom.org)

Lesson #4: Training is Important
Training is an essential building block in a compliance program to ensure that employees have a good
understanding of the policies governing the use of FOSS. All personnel involved in the development, QA,
release and maintenance of software, need to understand the compliance program and their company’s
policies and procedures. Companies often provide such education through formal and informal training
sessions.

{ Our number one goal in any GPL violation case is to get proper and full compliance
with the license; everything else is secondary.

– David Turner, GPL Compliance Engineer, Free Software Foundation (09/23/2003,
http://lwn.net/Articles/51570) }

12

Free and Open Source Software Compliance:
The Basics You Must Know

Conclusion
This paper provided an overview of the changing business environment requiring

a compliance program to ensure that companies honor the license obligations

resulting from the use of proprietary, 3rd party commercial and FOSS components in

their products. Furthermore, the paper highlighted examples of compliance failures,

provided recommendations on how to avoid them and prevent them from happening

again. The paper concluded with a number of lessons learned from the various non-

compliance cases.

Future planned papers will discuss topics such as:

•	 FOSS licenses, obligations and how to ensure obligations are met

•	 Challenges facing enterprises in establishing and achieving compliance and how to overcome them

•	 The role and responsibilities of the teams involved in achieving FOSS compliance

•	 An overview of a sample end-to-end compliance management process

•	 FOSS compliance best practices

•	 Working with compliance inquiries

FOSS compliance is an essential part of the software development process. If you use FOSS in your
product(s) and you do not have a solid FOSS compliance program, then you should consider this paper
as a call to action.

Resources
The Linux Foundation

The Software Freedom Law Center

The Free Software Foundation

The	GNU	Project

http://www.linuxfoundation.org

http://www.softwarefreedom.org

http://www.fsf.org

http://www.gnu.org/licenses/gpl-violation.html

Acknowledgements
The	author	would	like	to	express	his	gratitude	to	Karen	Copenhaver	(Legal	Director	of	the	Linux	
Foundation	and	Partner	in	Choate,	Hall	&	Stewart	LLP	‘s	Business	&	Technology	practice)	and	Eben	
Moglen	(Professor	of	Law	and	Legal	History	at	Columbia	University	Law	School	and	Chairman	of	the	
Software Freedom Law Center) for their reviews and valuable input.

About the Author
Ibrahim	Haddad	is	Director	of	Technology	and	Alliances	at	the	Linux	Foundation	focusing	on	Mobile	Linux	
initiatives and advancing the Linux platform for next-generation mobile computing devices.

