
» The Linux Foundation

A White Paper By The Linux Foundation
http://www.linuxfoundation.org

Understanding the Open Source
Development Model

November 2011
...............
By Ibrahim Haddad (Ph.D.) and Brian Warner, The Linux Foundation

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

1Understanding the Open Source Development Model

This paper presents an overview of the open source development model. It discusses the
typical progression from an idea to an implemented feature, and highlights some of the key
characteristics of open source development.

Introduction
The open source software development model is characterized by processes and values that set it
apart from the traditional proprietary development model.

The software development model practiced by many organizations generally consists of discrete
periods of development activity that cascade towards a project’s release. The open source
development model takes a different approach, favoring a more fluid development process
characterized by increased intra-team collaboration, continuous integration and testing, and
greater end-user involvement.

The open source development model is being increasingly adopted within traditional
development organizations as a means of producing higher quality software, even within
companies that are not producing an open source product. This is generally due to the increased
efficiencies the open source development model offers to large, distributed teams working on
major software projects.

This paper examines the open source development model and describes typical processes for
manging feature requests, source code submissions, and architectural decisions. It will also discuss
foundational characteristics of the open source life-cycle such as peer review, the “release early
and often” mentality, and continuous testing and integration.

Please note that every open source project has its own way of manging their development
process. The description in this article is not specific to any one project, but rather describes a
process and characteristics that would apply to most open source projects.

The Open Source Development Model
The open source development model presumes that development is distributed among multiple
teams, working in different locations, in a fluid structure that is resilient to new arrivals or departures.
Successful open source communities have developed processes where code can be submitted
and integrated asynchronously, communication is well documented, and features are integrated
in small increments to catch issues early in the development cycle.

One of the core characteristics of the open source development model is that individuals or small
teams of contributors are responsible for development and maintenance of code, illustrated
in Figure 1. Contributed features are integrated into a single body of code by one or more
maintainers, who ensure newly submitted code meets the overall vision and standards set for the
project.

The feature development life-cycle, illustrated in Figure 2, begins with an idea for a new project,
feature or enhancement, which is proposed to other project developers. Following further
discussion about the need for the feature, the next step is to design and implement it.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

2Understanding the Open Source Development Model

Figure 1: Flow of source code from contributors to the mainline version to the marketplace

When the new feature compiles and runs, it is typically distributed within the development
community as an alpha release, even though it may contain known and unknown bugs. The
purpose of early distribution is to collect feedback and allow users to test and provide input. This is
commonly called “release early and often.” Users may provide feedback, bug reports, and fixes,
which are integrated into the next development release. This cycle repeats, until the developers
feel that the implementation is stable enough to submit for inclusion into the main project.

The author of the code then submits the code to a project maintainer over the project mailing list.
The maintainer determines whether the code should be accepted into the development tree, or
returned for revision. Some projects may have multiple layers of maintainers, depending on the
complexity of the code and the size of the project.

When the code has been signed off by all relevant maintainers, it is then included into the
project’s main source tree for publishing in the next release.

The Open Source Feature Life-Cycle
Feature Request Process
Feature requests are generally tracked and prioritized using processes that are visible to the rest
of the development community. This ensures a common understanding of which features have
been requested, their relative priority, their development status, associated bugs and blockers,
and when they are planned for release.

Figure 3 shows the typical process used to ensure that feature requests are accurately tracked,
prioritized, developed, and released.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

3Understanding the Open Source Development Model

Figure 2: Feature life-cycle in the open source development model

Figure 3: Flow of source code from contributors to the mainline version to the marketplace

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

4Understanding the Open Source Development Model

Feature requests may begin with a proposal to a mailing list, a discussion on IRC, or as a feature
request in a project’s bugzilla. The request is typically made by whoever is likely to lead the
implementation work. The purpose of the request is to notify others of the need, solicit feedback,
gain acceptance for the idea, and come to a consensus on next steps.

Project contributors and maintainers then evaluate the request, and determine whether it should
be a candidate for a future release. There will often be discussions between the requester and the
development community to clarify needs and requirements. If the request is approved, a target
release will be set, and development begins.

Architecture and Design Discussion
One of the major contributing factors to the success of the open source development model is
its transparency, and ability to accommodate distributed collaboration among project teams.
This is accomplished using communication methods that are accessible to all within the project
community for strategic decision making, architecture discussions, and code reviews.

Mailing lists are one of the most commonly used communication channels because they are
self-documenting, transparent, and typically anyone involved in the project can participate. This
includes end users, who may be monitoring the lists to understand future features as they evolve or
to provide practical feedback.

In addition to project mailing lists, many distributed teams use IRC for live discussion and meetings.
Because of its text-only nature, IRC is useful for design meetings and user support, especially when
English is not the primary spoken language of all participants.

Collaboration on Implementation
The open source development model places strong emphasis upon collaborative development
and peer review, from first idea to final acceptance. Because it evolved to support highly
decentralized teams where submitters were not all personally known to the maintainers, the model
favors those who work with others on design and implementation while clearly communicating
their plans.

In addition, most open source projects use tools that have evolved to support code contribution
from many simultaneous and distributed collaborators. For example, the open source git
repository system was created specifically to support Linux development, where thousands of
contributors are submitting code for any given release. Each developer works to develop, debug,
build, and validate their own code against the current code-base, so that when the time comes
to integrate into the mainline project, their changes apply cleanly and with a minimum amount of
merging effort. If there is an unforeseen problem with the code, any individual submission can be
easily reverted.

Source Code Submission
The life-cycle of a new code submission, illustrated in Figure 4, is often quite iterative. The process
begins with collaborative development among a subset of developers who have taken ownership
for delivering the feature. When the code is functional and applies cleanly against the mainline
project, the project team submits the code to a project maintainer over the project mailing list.
The maintainer and other project participants may provide feedback on the submission and
decline to accept it, in which case the implementation team would revise and resubmit the code.

Because smaller patches are easier to understand and test, submitters are generally encouraged

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

5Understanding the Open Source Development Model

to submit changes in the smallest increments possible. Smaller patches are less likely to have
unintended consequences, and if they do, getting to root cause of an issue is much easier.

Figure 4: Typical flow of code from individual contributor to mainline version

When the maintainer accepts submitted code, it will then be integrated into his or her
development tree. In a large, multi-layer project, the maintainer may then be responsible for
submitting it to additional maintainers further up the tree. When the code has been approved by
the top-most maintainer, it is integrated for distribution in the mainline release.

Continuous Testing and Integration
Because work may be highly distributed, the open source development model places emphasis
upon detecting issues early and fixing them quickly. Many larger projects create nightly and

Establishing Ownership
Because code submissions can come from anyone, most projects have formal procedures in place
to track ownership of code when a patch is submitted.
The “Signed-off-by” line provides the real name and email of the person who is responsible for the
code. It is also an agreement to the Developer’s Certificate of Origin, which requires that the
submitter have the rights to contribute the code. At least one signed-off-by line is typically required,
as it enables others to quickly determine who submitted code if there is ever a question over origin,
license, or maintenance.
In a similar manner, some projects also track reviewers. The “Acked-by” line indicates when
someone other than the author or the maintainer has provided a thorough review and believes it is
ready for integration.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

6Understanding the Open Source Development Model

weekly builds using an automated build suite, evaluating new code as soon as possible after
integration.

In addition to automated build suites, some projects also create custom test suites to detect
functional issues as they occur during active development. These test suites are typically open
source as well.

The open source development model favors small, incremental changes, which can make
diagnosing build issues, bugs, security holes, and regressions much easier. This ensures that new
code does not impact the project’s overall focus upon high quality and secure code.

Source Code Release
With few exceptions, projects that use the open source model make both a stable snapshot of the
last release and the current development tree available. This helps ensure that users can retrieve
the most recent stable release, while developers can work from the most current code.

Release management practices vary from project to project, but most nominate an individual
or team to evaluate the maturity of features in the development tree, and monitor QA metrics.
When the release criteria are met, this team declares the release to be complete and branches
the development tree.

Characteristics of the Development Model
An interwoven development cycle
The open source development model is characterized by a series of interwoven processes that
continually improve code quality, instead of a strictly linear progression to a release. Unlike the
“big reveal” that typically accompanies the traditional software development model, the open
source model encourages continuous and independent feature development. This enables new
features to be integrated as they are ready, which in turn allows other developers to build upon
them more quickly and produce a more competitive product.

Release Early and Often
“Release early and often” refers to the development practice of publishing alpha code to the
development community for review well in advance of the final release. This results in highly
iterative development, and minimizes the amount of change between development releases,
making regressions and breakages easier to diagnose.

This release philosophy allows for continuous peer review, where all members of the community
have the opportunity to comment and offer suggestions and bug fixes. It also encourages small,
incremental changes that are easier to understand and test while developers are actively
engaged, rather than being discovered during a separate final test cycle.

A side benefit is that the code is frequently reviewed for adherence to coding style, and fragile or
inflexible code can be found and improved early in the development cycle.

Peer Review
The open source development process emphasizes peer review throughout the entire
development life-cycle. Developers are expected to submit their code to project mailing lists for
periodic public peer review, particularly when a feature achieves a development milestone. This
helps to ensure that others outside of the development team are aware of the changes, and can

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

7Understanding the Open Source Development Model

provide feedback before the design is final and implementation complete. Other members of the
open source project review the code, provide comments and feedback to improve the quality
and functionality, and test to catch bugs and provide enhancements as early as possible in the
development cycle.

When a feature is complete and ready to be considered for integration, the project maintainer
also provides a level of review prior to accepting the code. By the time code is integrated into
the main product, it has undergone a number of detailed inspections by others outside of the
development team. The result is improved, higher quality code.

Conclusion
This paper discussed major elements of the open source development life-cycle, and described
typical characteristics of open source development. The open source development model
has proved to be very successful, with hundreds of success stories. This development model has
special characteristics that allow faster development by broadly distributed teams, continual
and thorough testing, faster innovation, multiple layers of peer review, and total openness and
transparency throughout the project.

For more information on getting started, please see the resources below, and learn more on
http://www.linuxfoundation.org.

Linux Foundation Resources
Training
The Linux Foundation offers two training courses to enable organizations effectively work with open

source developers:

•	 LF 205: How to Participate in the Linux Community: Working with the kernel development
community is not particularly hard, but it does require an understanding of how that
community works. This course is intended to bring attendees up to speed quickly on how
kernel development is done and how to be a part of the process with a minimum of pain and
frustration.

•	 LF 271: Practical Guide to Open Source Development: This course prepares organizations
to maximize their effectiveness and shorten the time to value when participating in open
source development projects. This course builds upon years of best practices and extensive
experience in commercial participation in open source projects to help organizations
approach the open development model in a structured and methodical manner, maximizing
the likelihood of success. The course provides extensive examples from the Linux kernel
community, and includes specific best practices for working with upstream.

Labs
If you have a collaborative software project you need hosted at a neutral party, the Linux
Foundation may be able to help. The Linux Foundation assists companies and communities by
hosting collaborative software projects.

The Linux Foundation provides three main services to Lab projects:

•	 The technical, operational and legal infrastructure so that project leaders can focus on
technological innovation.

http://www.linuxfoundation.org
https://training.linuxfoundation.org/courses/linux-developer/how-to-participate-with-the-linux-community
https://training.linuxfoundation.org/courses/linux-developer/practical-guide-to-open-source-development

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org

.....

8Understanding the Open Source Development Model

•	 Guidance and consulting on open source best practices gleaned from the two decades of
experience of Linux and the ability to collaborate and network with the large and growing
Linux Foundation community.

•	 By providing these services to companies and developers, the Linux Foundation provides a
much needed framework for advancing and accelerating technology that allows project
hosts to focus on innovation.

There are two main criteria that must be met in order for the Linux Foundation to host a lab project:

•	 Use of open source governance best practices including license and contribution agreement
choices in keeping with the ideals of Linux

•	 Project must either use Linux or have the potential to enhance the Linux ecosystem

If you have a project that may fit this criteria, please contact us:

http://www.linuxfoundation.org/labs.

Open Compliance Program
The Linux Foundation’s Open Compliance Program was established to boost adoption of Linux
and other open source by making license compliance ever-easier to achieve, to increase
awareness and understanding of open source compliance responsibilities, and to make available
free resources that can help companies establish their compliance programs. The program offers
comprehensive training, compliance educational materials (white papers, compliance blog,
webinars), compliance tools, an online compliance community (FOSSBazaar), a best practices
checklist, a rapid alert directory of company compliance officers, and SPDXTM, a standard to help
companies uniformly tag and report software used in their products.

Events
The Linux Foundation produces a number of technical events around the world that provide a
venue to bring together developers to solve problems in a real-time environment.

Publications
The Linux Foundation produces a wide range of publications that are available for free download.
These publications are divided into three categories: Open Source Compliance, Workgroups
(such as Tizen, OpenMAMA, LSB, SPDX, FOSSology, etc.) and Community. The Linux Foundation
publications are available from http://www.linuxfoundation.org/publications.

About the Authors
Ibrahim Haddad, Ph.D., is the Director of Technology and Alliances at The Linux Foundation and
Contributing Editor for the Linux Journal.

Brian Warner is Operations Manager at the Linux Foundation.

http://www.linuxfoundation.org/labs
http://www.linuxfoundation.org/programs/legal/compliance
http://www.linuxfoundation.org/events
http://www.linuxfoundation.org/publications

The Linux Foundation promotes, protects, and
advances Linux by providing unified resources

and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation, or
any of our other initiatives please visit us at

http://www.linuxfoundation.org/.

